I. Nhóm chứa trung vị
Nhóm chứa trung vị của mẫu số liệu ghép nhóm là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(\frac{N}{2}\), trong đó N là cỡ mẫu.
II. công thức tính trung vị của mẫu số liệu ghép nhóm
\({M_e} = {L_m} + \frac{{\frac{N}{2} - T}}{{{n_m}}}.h\)
Trong đó:
* Ý nghĩa: Trung vị của mẫu số liệu ghép nhóm là giá trị xấp xỉ cho trung vị của mẫu số liệu và có thể sử dụng làm giá trị đại diện cho mẫu số liệu.
III. Công thức tính các tứ phân vị của mẫu số liệu ghép nhóm
Công thức tính các tứ phân vị \({Q_1},{Q_2},{Q_3}\) của mẫu số liệu ghép nhóm:
Nhóm chứa \({Q_i}\left( {i = 1,2,3} \right)\) là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(\frac{{iN}}{4}\) và
\({Q_i} = {L_i} + \frac{{i.\frac{N}{4} - {T_i}}}{{{n_i}}}.h\)
Trong đó:
* Lưu ý: Trong trường hợp các nhóm có độ dài bằng nhau thì h giống nhau với mọi nhóm.
* Ý nghĩa:
- Tứ phân vị của mẫu số liệu ghép nhóm là giá trị xấp xỉ của tứ phân vị của mẫu số liệu.
- Các tứ phân vị \({Q_1},{Q_2},{Q_3}\) chia mẫu số liệu ghép nhóm thành 4 phần có số liệu bằng nhau. Các tứ phân vị cho ta một hình ảnh về sự phân bố của mẫu số liệu. Dựa vào các tứ phân vị, ta có thể biết số liệu tập trung ít hay nhiều quanh trung vị.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK