Trang chủ Lớp 11 SGK Toán 11 - Cùng khám phá Chương 4 Đường thẳng và mặt phẳng trong không gian. Quan hệ song song Mục 2 trang 96, 97, 98, 99 Toán 11 tập 1 - Cùng khám phá: Đường thẳng d’ có nằm trong mặt phẳng (M, d) không?...

Mục 2 trang 96, 97, 98, 99 Toán 11 tập 1 - Cùng khám phá: Đường thẳng d’ có nằm trong mặt phẳng (M, d) không?...

Hai đường thẳng song song là hai đường thẳng cùng nằm trong một mặt phẳng và không có điểm chung. Hướng dẫn trả lời Hoạt động 2 , Hoạt động 3, Luyện tập 2 , Luyện tập 3 , Hoạt động 4 , Luyện tập 4 , Vận dụng - mục 2 trang 96, 97, 98, 99 SGK Toán 11 tập 1 - Cùng khám phá - Bài 2. Hai đường thẳng song song. Cho đường thẳng d và điểm M không thuộc d. Vẽ đường thẳng \({d^'}\) qua M và song song với d...Đường thẳng d’ có nằm trong mặt phẳng (M, d) không?

Câu hỏi:

Hoạt động 2

Cho đường thẳng d và điểm M không thuộc d. Vẽ đường thẳng d’ qua M và song song với d.

a) Đường thẳng d’ có nằm trong mặt phẳng (M, d) không?

b) Có thể vẽ được bao nhiêu đường thẳng d’ như vậy? Vì sao?

Hướng dẫn giải :

a) Hai đường thẳng song song là hai đường thẳng cùng nằm trong một mặt phẳng và không có điểm chung.

b) Sử dụng tiên đề Euclid: “Qua một điểm nằm ngoài một đường thẳng, chỉ có một đường thẳng song song với đường thẳng đó.”

Lời giải chi tiết :

a) Đường thẳng d’ nằm trong mặt phẳng (M, d) vì hai đường thẳng song song phải đồng phẳng.

b) Chỉ vẽ được duy nhất một đường thẳng d’ vì theo tiên đề Euclid: “Qua một điểm nằm ngoài một đường thẳng, chỉ có một đường thẳng song song với đường thẳng đó.”


Câu hỏi:

Hoạt động 3

Cho hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) cắt nhau theo giao tuyến c. Một mặt phẳng \(\left( \gamma \right)\) cắt \(\left( \alpha \right)\) và \(\left( \beta \right)\) lần lượt theo các giao tuyến a và b.

a) Khi a và b cắt nhau tại I thì I có thuộc c không?

b) Khi a và b song song với nhau thì a có thể cắt đường thẳng c không?

Hướng dẫn giải :

Điểm chung của 2 mặt phẳng thì phải nằm trên giao tuyến của chúng.

Lời giải chi tiết :

a)

\(\left\{ \begin{array}{l}a \subset \left( \alpha \right)\\b \subset \left( \beta \right)\\a \cap b = I\end{array} \right.\)

Nên I là điểm chung của \(\left( \alpha \right)\) và \(\left( \beta \right)\).

Mà c là giao tuyến của \(\left( \alpha \right)\) và \(\left( \beta \right)\).

Vậy I phải thuộc c.

b) Giả sử a và c cắt nhau tại điểm O. Ta có:

\(\left\{ \begin{array}{l}a \cap c = O\\a \subset \left( \gamma \right)\\c \subset \left( \beta \right)\end{array} \right.\)

\( \Rightarrow \)O là điểm chung của \(\left( \gamma \right)\) và \(\left( \beta \right)\). Mà b là giao tuyến của \(\left( \gamma \right)\) và \(\left( \beta \right)\).

\( \Rightarrow \)\(O \in b\)

Mặt khác: \(O \in a\)

\( \Rightarrow \)a và b có điểm chung là O (Mâu thuẫn với a song song với b)

Vậy a không thể cắt c.


Câu hỏi:

Luyện tập 2

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi M là một điểm thuộc đoạn SA (M khác S và A). Xác định giao tuyến của các mặt phẳng (SAB) và (MCD).

Hướng dẫn giải :

Hai mặt phẳng (P) và (Q) có điểm chung là A và lần lượt chứa 2 đường thẳng song song là a và b thì giao tuyến của chúng sẽ là đường thẳng đi qua A và song song với a, b.

Lời giải chi tiết :

image

(SAB) và (MCD) có điểm chung là M và lần lượt chứa hai đường thẳng song song là AB và CD nên giao tuyến của chúng là đường thẳng d đi qua M và song song với AB, CD.


Câu hỏi:

Luyện tập 3

Cho hình chóp S.ABC. Gọi I và J lần lượt là trung điểm của AB và AC. (P) là mặt phẳng chứa IJ và cắt SB, SC lần lượt tại K, L. Chứng minh rằng IJLK là hình thang. Nếu K là trung điểm SB thì tứ giác IJLK là hình gì?

Hướng dẫn giải :

Áp dụng hệ quả định lý về giao tuyến của 3 mặt phẳng:

\(\left\{ \begin{array}{l}a \subset \left( P \right)\\b \subset \left( Q \right)\\a//b\\\left( P \right) \cap \left( Q \right) = c\end{array} \right. \Rightarrow a//b//c\)

Nhắc lại kiến thức cũ:

- Hình thang là tứ giác có 2 cạnh đối song song với nhau. Hình thang có 2 cạnh đáy bằng nhau là hình bình hành.

- Đường trung bình của tam giác là đoạn thẳng nối trung điểm 2 cạnh của tam giác. Đường trung bình song song với cạnh thứ ba và bằng nửa cạnh ấy.

Lời giải chi tiết :

image

Ta có: IJ song song với BC vì cùng thuộc (ABC) và không có điểm chung (Đường trung bình trong tam giác)

Theo đề bài: \(\left( P \right) \cap \left( {SBC} \right) = KL\)

Mà (P) và (SBC) lần lượt có IJ và BC song song với nhau nên KL cũng song song với IJ, BC.

Vậy IJLK là hình thang.

Nếu K là trung điểm của SB thì KL song song với BC và bằng \(\frac{1}{2}\)BC

Mặt khác: IJ cũng bằng \(\frac{1}{2}\)BC (Đường trung bình trong tam giác)

Nên KL = IJ

Hình thang IJLK có KL = IJ là hình bình hành.


Câu hỏi:

Hoạt động 4

Quan sát hình một cánh cửa. Khung cửa là một hình chữ nhật và \({d_1},{d_2}\) là hai đường thẳng chứa hai cạnh hình chữ nhật, mép cửa là hình ảnh đường thẳng \(\Delta \) (Hình 4.48). Khi cánh cửa xoay, hãy nhận xét về vị trí tương đối giữa \(\Delta \)với \({d_1}\)?

image

Hướng dẫn giải :

Quan sát hình vẽ.

Lời giải chi tiết :

Khi cánh cửa xoay thì \(\Delta \)và \({d_1}\) song song với nhau hoặc trùng nhau.


Câu hỏi:

Luyện tập 4

Cho hình chóp S.ABCD có đáy là tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các đoạn thẳng AB, AD, SD, SB. Chứng minh rằng MNPQ là hình bình hành.

Hướng dẫn giải :

- Trong không gian, hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.

- Tứ giác có một cặp cạnh đối song song và bằng nhau là hình bình hành.

- Đường trung bình là đoạn thẳng nối trung điểm của 2 cạnh tam giác. Đường trung bình song song và bằng một nửa cạnh thứ ba.

Lời giải chi tiết :

image

Xét (SAB) có M, Q lần lượt là trung điểm của AB, SB nên MQ song song và bằng một nửa SA.

Xét (SAD) có P, N lần lượt là trung điểm của SD, AD nên PN song song và bằng một nửa SA.

Suy ra MQ và PN song song và bằng nhau.

Vậy MNPQ là hình bình hành.


Câu hỏi:

Vận dụng

a) Hình 4.51 là một loại thang nhôm chữ A được kết hợp từ hai nhánh là hai thang đơn. Hãy chỉ ra hình ảnh một số cặp đường thẳng song song ở mỗi nhánh của thang. Các bậc thang ở hai nhánh khác nhau có song song với nhau không? Vì sao?

b) Hãy nêu thêm một số đồ vật xung quanh có hình ảnh là các đường thẳng song song.

image

Hướng dẫn giải :

Hai đường thẳng song song là hai đường thẳng đồng phẳng và không có điểm chung.

Lời giải chi tiết :

a) Các bậc thang ở một nhánh đều song song với nhau.

Vì các bậc thang ở mỗi nhánh đều song song với bậc thang trên cùng của nhánh đó. Mà 2 bậc thang trên cùng song song với nhau nên các bậc thang ở hai nhánh khác nhau cũng song song với nhau.

b) Các hình ảnh có các đường thẳng song song là sàn nhà có lát gạch, bảng, bàn, ghế,…

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cùng khám phá

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK