Các dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) dưới đây được cho bằng cách liệt kê:
\(\begin{array}{l}\left( {{u_n}} \right):1,\,3,\,9,\,27,\,81,\,243,...\\\left( {{v_n}} \right):2, - 1,\frac{1}{2}, - \frac{1}{4},\frac{1}{8},...\end{array}\)
a) Hãy dự đoán quy luật hình thành các số hạng của các dãy số trên.
b) Hãy viết ba số hạng tiếp theo của các dãy số trên.
a) So sánh số sau với số trước để tìm ra quy luật.
b) Dựa theo quy luật dự đoán ở phần a để tính 3 số hạng tiếp theo.
a) \(\left( {{u_n}} \right)\): Số sau gấp 3 lần số trước.
\(\left( {{v_n}} \right)\): Số sau bằng số sau nhân với \( - \frac{1}{2}\).
b) Ba số hạng tiếp theo của dãy \(\left( {{u_n}} \right)\) là 729, 2187, 6561.
Ba số hạng tiếp theo của dãy \(\left( {{v_n}} \right)\) là \( - \frac{1}{{16}},\frac{1}{{32}}, - \frac{1}{{64}}\).
Tìm số hạng thứ tư và số hạng thứ năm của cấp số nhân 16, 24,…
Áp dụng công thức \({u_{n + 1}} = {u_n}.q\).
Ta có: \({u_1} = 16,{u_2} = 24 \Rightarrow q = \frac{{24}}{{16}} = \frac{3}{2}\)
\( \Rightarrow {u_3} = 24.\frac{3}{2} = 36;{u_4} = 36.\frac{3}{2} = 54;{u_5} = 81\).
Vậy số hạng thứ 4 là 54, số hạng thứ 5 là 81.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK