Nhà hát bậc dốc hình tròn đã được xây dựng từ thời La Mã. Các dãy chỗ ngồi được xếp theo hình cung tròn mà số chỗ ngồi tăng dần từ trong ra ngoài. Một nhà hát như thế có số chỗ ngồi ở các dãy tính từ trong ra ngoài lập thành cấp số cộng 12, 16, 20,... Số chỗ ngồi của dãy cuối cùng là 72. Tính tổng số chỗ ngồi trong nhà hát.
Từ đầu bài, xác định \({u_1},d,{u_n}\).
Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\) để tìm n.
Áp dụng công thức \(S = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\) để tính tổng.
Gọi số dãy chỗ ngồi là n.
Một nhà hát như thế có số chỗ ngồi ở các dãy tính từ trong ra ngoài lập thành cấp số cộng 12, 16, 20,... Số chỗ ngồi của dãy cuối cùng là 72\( \Rightarrow {u_1} = 12,{u_2} = 16,{u_3} = 20,{u_n} = 72\)
\( \Rightarrow d = 4\)
Ta có:
\(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d\\ \Leftrightarrow 72 = 12 + \left( {n - 1} \right).4 \Leftrightarrow n - 1 = 15 \Leftrightarrow n = 16\end{array}\)
Vậy tổng số chỗ ngồi của nhà hát là \(S = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \frac{{16\left( {12 + 72} \right)}}{2} = 672\) (chỗ ngồi).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK