Tính độ dài cạnh x, y và số đo góc \(\alpha \) trong mỗi trường hợp ở Hình 4.23.
Hình a: \(\Delta \)ABC vuông tại A nên \(y = BC.\sin B;x = BC.\cos B\)
\(\Delta \)ADC vuông tại D nên \(\sin \alpha = \frac{{AD}}{{AC}}\) nên tính được \(\alpha \).
Hình b:
+ \(\Delta \)GFH vuông tại F nên \(F{G^2} + G{H^2} = F{H^2}\) nên tính được x
\(\sin GHF = \frac{{FG}}{{FH}} = \frac{7}{9}\) nên tính được góc FHG.
+ \(\Delta \)EFH vuông tại E nên \(y = FH.\sin EFH,\widehat {EHF} = {90^o} - \widehat {EFH}\). Do đó, \(\alpha = {180^o} - \widehat {EHF} - \widehat {FHG}\).
Hình c:
+ \(\Delta \)ONP vuông tại O nên \(x = PN.\cos NPO,NO = PN.\sin NPO\)
+ \(\Delta \)OMP vuông tại O nên \(\cos OPM = \frac{{OP}}{{PM}}\) nên tính được góc OPM, \(MO = PM.\sin MPO\)
Do đó, \(\alpha = \widehat {OPM} - \widehat {OPN},y = MN = MO - NO\)
Hình a:
\(\Delta \)ABC vuông tại A nên
\(y = BC.\sin B = 10\sin {55^o} \approx 8,2;x = BC.\cos B = 10\cos {55^o} \approx 5,7\)
Tam giác ADC vuông tại D nên
\(\sin \alpha = \frac{{AD}}{{AC}} = \frac{4}{{8,2}} = \frac{{20}}{{41}}\) nên \(\alpha \approx {29^o}12’\).
Hình b:
\(\Delta \)GFH vuông tại F nên \(F{G^2} + G{H^2} = F{H^2}\) (định lí Pythagore) nên \(x = GH = \sqrt {F{H^2} - F{G^2}} = \sqrt {{9^2} - {7^2}} = 4\sqrt 2 \approx 5,7\)
\(\sin GHF = \frac{{FG}}{{FH}} = \frac{7}{9}\) nên \(\widehat {FHG} \approx {51^o}3’\)
\(\Delta \)EFH vuông tại E nên
\(y = FH.\sin EFH = 9.\sin {62^o} \approx 7,9\), \(\widehat {EHF} = {90^o} - \widehat {EFH} = {90^o} - {62^o} = {28^o}\).
Do đó, \(\alpha = {180^o} - \widehat {EHF} - \widehat {FHG}\) \( \approx {180^o} - {28^o} - {29^o}11’\) \( \approx {122^o}49’\).
Hình c:
\(\Delta \)ONP vuông tại O nên \(x = PN.\cos NPO = 7.\cos {37^o} \approx 5,6\), \(NO = PN.\sin NPO = 7.\sin {37^o} \approx 4,2\).
\(\Delta \)OMP vuông tại O nên \(\cos OPM = \frac{{OP}}{{PM}} \approx \frac{{5,6}}{{11}}\) nên \(\widehat {OPM} \approx {59^o}24’\),
\(MO = PM.\sin MPO = 11.\sin {59^o}24′ \approx 9,5\)
Do đó, \(\alpha = \widehat {OPM} - \widehat {OPN} \approx {22^o}24′,y = MN = MO - NO \approx 5,3\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK