Trả lời câu hỏi Hoạt động 1 trang 5
a) Nêu định nghĩa hàm số đồng biến, hàm số nghịch biến trên tập \(K \subset \mathbb{R}\), trong đó K là một khoảng, đoạn hoặc nửa khoảng.
b) Cho hàm số \(y = f\left( x \right) = {x^2}\) có đồ thị như Hình 2.
- Xác định khoảng đồng biến, nghịch biến của hàm số đó.
- Xét dấu đạo hàm \(f’\left( x \right) = 2x\).
- Nêu mối liên hệ giữa sự đồng biến, nghịch biến của hàm số \(f\left( x \right) = {x^2}\) và dấu của đạo hàm \(f’\left( x \right) = 2x\) trên mỗi khoảng \(\left( { - \infty ;0} \right),\left( {0; + \infty } \right)\).
- Hoàn thành bảng biến thiên sau:
Dựa vào định nghĩa hàm số đồng biến, nghịch biến trên tập K
a) Cho K là một khoảng, một đoạn hoặc một nửa khoảng và \(f\left( x \right)\) là hàm số xác định trên K.
- Hàm số \(f\left( x \right)\) được gọi là hàm số đồng biến trên K nếu với mọi \({x_1},{x_2}\) thuộc K và \({x_1} < {x_2}\) thì \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\).
- Hàm số \(f\left( x \right)\) được gọi là hàm số đồng biến trên K nếu với mọi \({x_1},{x_2}\) thuộc K và \({x_1} < {x_2}\) thì \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\).
- Hàm số đồng biến hoặc nghịch biến trên K còn được gọi là hàm số đơn điệu trên K.
b)
- Hàm số đồng biến trên khoảng \(\left( {0; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\).
- Đạo hàm \(f’\left( x \right) = 2x\)âm khi \(x < 0\) và dương khi \(x > 0\).
- Hàm số \(y = f\left( x \right) = {x^2}\) nghịch biến khi \(f’\left( x \right) = 2x\)mang dấu âm và đồng biến khi \(f’\left( x \right) = 2x\) mang dấu dương.
- Ta có bàng biến thiên sau:
Trả lời câu hỏi Luyện tập 1 trang 6
Xét dấu \(y’\) rồi tìm khoảng đồng biến, nghịch biến của hàm số\(y = \frac{4}{3}{x^3} - 2{x^2} + x - 1\).
B1: Tính \(y’\)rồi lập bảng xét dấu của \(y’\).
B2. Dựa vào bảng xét dấu của \(y’\) để nhận xét khoảng đồng biến, nghịch biến của hàm số.
Tập xác định \(D = \mathbb{R}\).
Ta có: \(y’ = 4{x^2} - 4x + 1\).
Xét \(y’ = 0 \Leftrightarrow x = \frac{1}{2}\).
Vậy hàm số đồng biến trên \(\mathbb{R}\).
Trả lời câu hỏi Luyện tập 2 trang 7
Tìm các khoảng đơn điệu của hàm số \(y = {x^4} + 2{x^2} - 3\).
B1: Tìm tập xác định của hàm số.
B2: Tính \(y’\). Tìm các điểm mà tại đó \(y’ = 0\) hoặc \(y’\) không tồn tại.
B3: Lập bảng biến thiên của hàm số.
B4: Dựa vào bảng biến thiên để kết luận.
Tập xác định \(D = \mathbb{R}\).
Ta có: \(y’ = 4{x^3} + 4x\).
Xét \(y’ = 0 \Leftrightarrow x = 0\).
Ta có bảng biến thiên:
Vậy hàm số đồng biến trên khoảng \(\left( {0; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\).
Trả lời câu hỏi Hoạt động 2 trang 7
a) Xác định tính đồng biến, nghịch biến của hàm số \(f\left( x \right) = {x^3}\).
b) Xét dấu của đạo hàm \(f’\left( x \right) = 3{x^2}\).
c) Phương trình \(f’\left( x \right) = 0\) có bao nhiêu nghiệm ?
Dựa vào định nghĩa đồng biến, nghịch biến của hàm số và các bước xét tính đồng biến, nghịch biến của hàm số
a) Tập xác định \(D = \mathbb{R}\).
Ta có: \(y’ = 3{x^2}\).
Xét \(y’ = 0 \Rightarrow x = 0\).
Bảng biến thiên:
Vậy hàm số đồng biến trên \(\mathbb{R}\).
b) Dựa vào bảng biến thiên ta thấy đạo hàm \(y’ = 3{x^2}\) luôn dương với mọi x.
c) Phương trình \(f’\left( x \right) = 0\) có một nghiệm.
Trả lời câu hỏi Luyện tập 3 trang 7
Chứng minh rằng hàm số \(y = \sqrt {{x^2} + 1} \) nghịch biến trên nửa khoảng \(( - \infty ;0]\) và đồng biến trên nửa khoảng \([0; + \infty )\).
B1: Tìm tập xác định của hàm số.
B2: Tính \(y’\). Tìm các điểm mà tại đó \(y’ = 0\) hoặc \(y’\) không tồn tại.
B3: Lập bảng biến thiên của hàm số.
B4: Dựa vào bảng biến thiên để kết luận.
Tập xác định \(D = \mathbb{R}\).
Ta có: \(y’ = \frac{x}{{\sqrt {{x^2} + 1} }}\).
Xét \(y’ = 0 \Leftrightarrow x = 0\).
Ta có bảng biến thiên:
Vậy hàm số \(y = \sqrt {{x^2} + 1} \) nghịch biến trên nửa khoảng \(( - \infty ;0]\) và đồng biến trên nửa khoảng \([0; + \infty )\).
Trả lời câu hỏi Luyện tập 4 trang 8
Tìm các khoảng đơn điệu của hàm số sau \(y = \frac{{2x - 1}}{{x + 2}}\).
B1: Tìm tập xác định của hàm số.
B2: Tính \(y’\). Tìm các điểm mà tại đó \(y’ = 0\) hoặc \(y’\) không tồn tại.
B3: Lập bảng biến thiên của hàm số.
B4: Dựa vào bảng biến thiên để kết luận.
Tập xác định \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\).
Ta có: \(y’ = \frac{5}{{{{\left( {x + 2} \right)}^2}}}\).
Nhận xét: \(y’ > 0\) với mọi \(x \in D\).
Ta có bảng biến thiên:
Vậy hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK