Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Chương VIII. Quan hệ vuông góc trong không gian. Phép chiếu vuông góc Bài 38 trang 104 SBT Toán 11 - Cánh diều: Chứng minh các định lí sau: Cho hai mặt phẳng song song...

Bài 38 trang 104 SBT Toán 11 - Cánh diều: Chứng minh các định lí sau: Cho hai mặt phẳng song song...

Giả sử có ba mặt phẳng \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) thoả mãn \(\left( P \right)\parallel \left( Q \right)\) và \(\left( P \right) \bot \left(. Hướng dẫn cách giải/trả lời - Bài 38 trang 104 sách bài tập toán 11 - Cánh diều - Bài 4. Hai mặt phẳng vuông góc. Chứng minh các định lí sau: Cho hai mặt phẳng song song.

Đề bài :

Chứng minh các định lý sau:

a) Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai mặt phẳng đó thì vuông góc với mặt phẳng còn lại.

b) Cho một mặt phẳng và một đường thẳng không vuông góc với mặt phẳng đó. Khi đó tồn tại duy nhất một mặt phẳng chứa đường thẳng đã cho và vuông góc với mặt phẳng đã cho.

Hướng dẫn giải :

a) Giả sử có ba mặt phẳng \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) thoả mãn \(\left( P \right)\parallel \left( Q \right)\) và \(\left( P \right) \bot \left( R \right)\). Ta cần chứng minh \(\left( Q \right) \bot \left( R \right)\).

b) Xét đường thẳng \(d\) không vuông góc với mặt phẳng \(\left( P \right)\). Chỉ ra rằng tồn tại duy nhất mặt phẳng \(\left( Q \right)\) vuông góc với \(\left( P \right)\) và chứa \(d\).

Lời giải chi tiết :

a)

image

Giả sử có ba mặt phẳng \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) thoả mãn \(\left( P \right)\parallel \left( Q \right)\) và \(\left( P \right) \bot \left( R \right)\). Ta cần chứng minh \(\left( Q \right) \bot \left( R \right)\). Thật vậy, gọi \(a\) là giao tuyến của \(\left( P \right)\) và \(\left( R \right)\). Lấy đường thẳng \(d\) nằm trong \(\left( R \right)\) sao cho \(a \bot d\).

Vì \(\left( P \right) \bot \left( R \right)\), \(a = \left( P \right) \cap \left( R \right)\), \(a \bot d\), ta suy ra \(d \bot \left( P \right)\).

Mà \(\left( P \right)\parallel \left( Q \right)\), ta có \(d \bot \left( Q \right)\). Do \(d \subset \left( R \right)\) nên ta suy ra \(\left( Q \right) \bot \left( R \right)\). Bài toán được chứng minh.

b) Xét đường thẳng \(d\) không vuông góc với mặt phẳng \(\left( P \right)\). Chỉ ra rằng tồn tại duy nhất mặt phẳng \(\left( Q \right)\) vuông góc với \(\left( P \right)\) và chứa \(d\).

Xét trường hợp \(d\) cắt \(\left( P \right)\) tại \(A\). (Các trường hợp \(d \subset \left( P \right)\) và \(d\parallel \left( P \right)\) chứng minh tương tự).

image

Lấy \(M \in d\) sao cho \(M \ne A\). Vẽ đường thẳng \(a\) đi qua \(M\) sao cho \(a \bot \left( P \right)\). Ta nhận xét rằng \(a\) và \(d\) cắt nhau, nên mặt phẳng \(\left( Q \right)\) chứa hai đường thẳng \(a\) và \(d\).

Vì \(a \bot \left( P \right)\), \(a \subset \left( Q \right)\) nên ta suy ra \(\left( P \right) \bot \left( Q \right)\).

Giả sử tồn tại mặt phẳng \(\left( {Q’} \right)\) sao cho \(\left( P \right) \bot \left( {Q’} \right)\) và \(d \subset \left( {Q’} \right)\). Ta thấy rằng \(d\) là giao tuyến của \(\left( {Q’} \right)\) và \(\left( Q \right)\). Do \(\left( P \right) \bot \left( Q \right)\) và \(\left( P \right) \bot \left( {Q’} \right)\), ta suy ra \(d \bot \left( P \right)\). Điều này là vô lí, vì \(d\) không vuông góc với \(\left( P \right)\). Như vậy, \(\left( Q \right)\) là duy nhất.

Bài toán được chứng minh.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK