Cho hình hộp \(ABCD.A’B’C’D’\) có \(ABCD\) là hình thoi cạnh \(a\), \(AA’ \bot \left( {ABCD} \right)\), \(AA’ = 2a\), \(AC = a\). Tính khoảng cách:
a) Từ điểm \(A\) đến mặt phẳng \(\left( {BCC’B’} \right)\).
b) Giữa hai mặt phẳng \(\left( {ABB’A’} \right)\) và \(\left( {CDD’C’} \right)\).
c*) Giữa hai đường thẳng \(BD\) và \(A’C\).
a) Gọi \(H\) là trung điểm của cạnh \(BC\). Ta chứng minh \(H\) là hình chiếu của \(A\) trên mặt phẳng \(\left( {BCC’B’} \right)\), từ đó khoảng cách cần tìm là đoạn thẳng \(AH\).
b) Gọi \(I\) là trung điểm của cạnh \(DC\). Do \(\left( {ABB’A’} \right)\parallel \left( {DCC’D’} \right)\), nên khoảng cách giữa hai mặt phẳng này là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {DCC’D’} \right)\). Ta chứng minh \(I\) là hình chiếu của \(A\) trên mặt phẳng \(\left( {DCC’D’} \right)\), từ đó khoảng cách cần tìm là đoạn thẳng \(AI\).
c) Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Gọi \(E\) là hình chiếu của \(O\) trên \(A’C\). Ta chứng minh \(OE\) là đường vuông góc chung của 2 đường thẳng \(BD\) và \(A’C\), từ đó khoảng cách cần tính là đoạn thẳng \(OE\).
a) Gọi \(H\) là trung điểm của cạnh \(BC\). Tam giác \(ABC\) đều (\(AB = BC = AC = a\)) nên ta suy ra \(AH \bot BC\).
Do \(BB’ \bot \left( {ABCD} \right)\), ta suy ra \(BB’ \bot AH\).
Như vậy, do \(AH \bot BC\), \(BB’ \bot AH\) nên \(AH \bot \left( {BCC’B’} \right)\), điều này có nghĩa \(H\) là hình chiếu của \(A\) trên mặt phẳng \(\left( {BCC’B’} \right)\). Vậy khoảng cách từ \(A\) đến \(\left( {BCC’B’} \right)\) là đoạn thẳng \(AH\).
Tam giác \(ABC\) đều cạnh \(a\), đường cao \(AH\) nên \(AH = \frac{{a\sqrt 3 }}{2}\).
Vậy khoảng cách từ \(A\) đến \(\left( {BCC’B’} \right)\) là \(\frac{{a\sqrt 3 }}{2}\).
b) Do \(ABCD.A’B’C’D’\) là hình hộp, nên \(\left( {ABB’A’} \right)\parallel \left( {DCC’D’} \right)\). Suy ra khoảng cách giữa hai mặt phẳng này cũng bằng khoảng cách từ \(A\) đến mặt phẳng \(\left( {DCC’D’} \right)\).
Gọi \(I\) là trung điểm của cạnh \(DC\). Tam giác \(ADC\) có \(AB = DC = AC = a\) nên nó là tam giác đều. Suy ra \(AI \bot DC\) và \(AI = \frac{{a\sqrt 3 }}{2}\).
Do \(DD’ \bot \left( {ABCD} \right)\), ta suy ra \(DD’ \bot AI\). Như vậy, do \(AI \bot DC\), \(DD’ \bot AI\) nên \(AI \bot \left( {DCC’D’} \right)\). Điều này có nghĩa \(I\) là hình chiếu của \(A\) trên mặt phẳng \(\left( {DCC’D’} \right)\). Vậy khoảng cách giữa hai mặt phẳng \(\left( {ABB’A’} \right)\) và \(\left( {DCC’D’} \right)\), bằng khoảng cách từ \(A\) trên mặt phẳng \(\left( {DCC’D’} \right)\), là đoạn thẳng \(AI\), và bằng \(\frac{{a\sqrt 3 }}{2}\).
c) Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Do \(ABCD\) là hình thoi nên \(AC \bot BD\) và \(AO = \frac{{AC}}{2} = \frac{a}{2}\)
Do \(AA’ \bot \left( {ABCD} \right)\), nên \(AA’ \bot BD\). Như vậy, do \(AC \bot BD\), \(AA’ \bot BD\) nên \(\left( {AA’C} \right) \bot BD\).
Gọi \(E\) là hình chiếu của \(O\) trên \(A’C\). Vì \(OE \subset \left( {AA’C} \right)\), \(\left( {AA’C} \right) \bot BD\) nên \(OE \bot BD\). Như vậy \(OE\) là đường vuông góc chung của 2 đường thẳng \(BD\) và \(A’C\), điều này có nghĩa khoảng cách giữa \(BD\) và \(A’C\) là đoạn thẳng \(OE\).
Tam giác \(CEO\) và \(CAA’\) có chung góc \(C\) và có góc vuông \(\widehat {CEO} = \widehat {CAA’}\) nên chúng đồng dạng với nhau. Suy ra \(\frac{{OE}}{{AA’}} = \frac{{CO}}{{CA’}} \Rightarrow OE = \frac{{AA’.CO}}{{CA’}}\)
Tam giác \(AA’C\) vuông tại \(A\), nên \(A’C = \sqrt {A'{A^2} + A{C^2}} = \sqrt {{{\left( {2a} \right)}^2} + {a^2}} = a\sqrt 5 \).
Do đó \(OE = \frac{{AA’.OC}}{{A’C}} = \frac{{2a.\frac{a}{2}}}{{a\sqrt 5 }} = \frac{{a\sqrt 5 }}{5}\).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK