Một ứng dụng quan trọng của con lắc đơn là trong lĩnh vực địa chất. Các nhà địa chất quan tâm đến những tính chất đặc biệt của lớp bề mặt Trái Đất và thường xuyên phải đo gia tốc rơi tự do ở một nơi nào đó. Ví dụ như trầm tích khoáng sản hay các mỏ quặng có thể làm thay đổi giá trị gia tốc rơi tự do tại nơi đó. Nhờ vậy, các nhà địa chất đo gia tốc rơi tự do để phát hiện các vị trí có mở quặng. Một máy đo gia tốc rơi tự do đơn giản nhất chính là một con lắc đơn. Đo thời gian con lắc đơn có chiều dài l thực hiện một số dao động, từ đó suy ra chu kì T. Sau đó tính g dựa vào cộng thức (2.1). Lặp lại thí nghiệm nhiều lần với các con lắc cí chiều dài dây treo khác nhau. Lấy giá trị trung bình g ở các lần đo, ta được gia tốc rơi tự do tại đó.
Trong thí nghiệm đo gia tốc rơi tự do tại một địa phương, các nhà địa chất sử dụng đồng hồ để đo thời gian các con lắc đơn có chiều dài khác nhau thực hiện 100 chu kì dao động. Kết quả đo được cho trong Bảng 2.1. Xác định gia tốc rơi tự do tại địa phương đó.
Áp dụng công thức tính chu kì của con lắc đơn \(T = 2\pi \sqrt {\frac{l}{g}} \)để tính gia tốc rơi tự do g. Tính các giá trị tương ứng với các con lắc có chiều dài khác nhau.
Thời gian con lắc thực hiện 100 dao động là \(\Delta t\).
Chu kì dao động của con lắc là \(T = \frac{{\Delta t}}{n} = \frac{{\Delta t}}{{100}}\).
Gia tốc rơi tự do là g. \(T = 2\pi \sqrt {\frac{l}{g}} \Rightarrow g = \frac{{l{{\left( {2\pi } \right)}^2}}}{{{T^2}}} = \frac{{l{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{\Delta {t^2}}}\).
Lần lượt thay các giá trị l và \(\Delta t\)được cho trong Bảng 2.1, ta được các giá trị gia tốc rơi tự do:
\({l_1} = 500mm = 0,5m\); \(\Delta {t_1} = 141,7s\); \({g_1} = \frac{{{l_1}{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{\Delta {t_1}^2}} = \frac{{0,5.{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{141,{7^2}}} \approx 9,8308\)(m/s2).
\({l_2} = 1000mm = 1m\); \(\Delta {t_2} = 200,6s\); \({g_2} = \frac{{{l_2}{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{\Delta {t_2}^2}} = \frac{{1.{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{200,{6^2}}} \approx 9,8107\)(m/s2).
\({l_3} = 1500mm = 1,5m\);\(\Delta {t_3} = 245,8s\);\({g_3} = \frac{{{l_3}{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{\Delta {t_3}^2}} = \frac{{1,5.{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{245,{8^2}}} \approx 9,8014\)(m/s2).
\({l_4} = 2000mm = 2,0m\);\(\Delta {t_4} = 283,5s\);\({g_4} = \frac{{{l_4}{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{\Delta {t_4}^2}} = \frac{{2,0.{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{283,{5^2}}} \approx 9,8239\) (m/s2).
Gia tốc rơi tự do tại địa phương là:
\(\bar g = \frac{{{g_1} + {g_2} + {g_3} + {g_4}}}{4} = \frac{{9,8308 + 9,8107 + 9,8014 + 9,8239}}{4} = 9,8167\)(m/s2).
Học Vật Lý cần sách giáo khoa, vở bài tập, bút mực, bút chì, máy tính cầm tay và các dụng cụ thí nghiệm như máy đo, nam châm, dây dẫn.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Vật lý học là môn khoa học tự nhiên khám phá những bí ẩn của vũ trụ, nghiên cứu về vật chất, năng lượng và các quy luật tự nhiên. Đây là nền tảng của nhiều phát minh vĩ đại, từ lý thuyết tương đối đến công nghệ lượng tử.'
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK