Cho hình lăng trụ đứng \(ABCD.A’B’C’D’\) có đáy \(ABCD\) là hình vuông cạnh \(a\). Góc giữa đường thẳng \(AC\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \({60^ \circ }\).
a) Chứng minh rằng hai mặt phẳng \(\left( {ACC’A’} \right)\) và \(\left( {BDD’B’} \right)\) vuông góc với nhau.
b) Tính khoảng cách giữa hai đường thẳng \(AB\) và \(CD’\).
‒ Cách chứng minh hai mặt phẳng vuông góc: Chứng minh mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng còn lại.
‒ Cách tính khoảng cách giữa hai đường thẳng song song: Tính khoảng cách từ một điểm bất kì thuộc đường thẳng này đến đường thẳng kia.
a) \(ABCD\) là hình vuông \( \Rightarrow AC \bot B{\rm{D}}\)
\(BB’ \bot \left( {ABCD} \right) \Rightarrow BB’ \bot AC\)
\(\left. \begin{array}{l} \Rightarrow AC \bot \left( {B{\rm{DD’B’}}} \right)\\AC \subset \left( {ACC’A’} \right)\end{array} \right\} \Rightarrow \left( {ACC’A’} \right) \bot \left( {B{\rm{DD}}’B’} \right)\)
b) \(ABCD\) là hình vuông \( \Rightarrow AB\parallel C{\rm{D}}\)
\(CDD’C’\) là hình chữ nhật \( \Rightarrow C{\rm{D}}\parallel C'{\rm{D}}’\)
\( \Rightarrow AB\parallel C'{\rm{D}}’ \Rightarrow d\left( {AB,C'{\rm{D}}’} \right) = d\left( {B,C'{\rm{D}}’} \right)\)
\(A’B’C’D’\) là hình vuông \( \Rightarrow C’D’ \bot B’C’\)
\(CDD’C’\) là hình chữ nhật \( \Rightarrow C’D’ \bot CC’\)
\( \Rightarrow C’D’ \bot \left( {BCC’B’} \right) \Rightarrow C’D’ \bot BC’ \Rightarrow d\left( {B,C'{\rm{D}}’} \right) = BC’\)
\(ABCD\) là hình vuông \( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \)
\(\begin{array}{l}CC’ \bot \left( {ABCD} \right) \Rightarrow \left( {AC’,\left( {ABCD} \right)} \right) = \left( {AC’,AC} \right) = \widehat {CAC’} = {60^ \circ }\\ \Rightarrow CC’ = AC.\tan \widehat {CAC’} = a\sqrt 6 \end{array}\)
\(\Delta BCC’\) vuông tại \(C \Rightarrow BC{‘^2} = \sqrt {B{C^2} + CC{‘^2}} = a\sqrt 7 \)
Vậy \(d\left( {AB,C'{\rm{D}}’} \right) = a\sqrt 7 \).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK