Trang chủ Lớp 11 SGK Toán 11 - Cánh diều Chương VIII. Quan hệ vuông góc trong không gian. Phép chiếu song song Giải mục 2 trang 108, 109, 110, 111 Toán 11 tập 2 - Cánh Diều: Để tạo mô hình một tháp chuông ở Hình 83a từ một tấm bìa hình vuông...

Giải mục 2 trang 108, 109, 110, 111 Toán 11 tập 2 - Cánh Diều: Để tạo mô hình một tháp chuông ở Hình 83a từ một tấm bìa hình vuông...

. Giải và trình bày phương pháp giải Hoạt động 2 , Luyện tập 2 , Hoạt động 3, Luyện tập 3 mục 2 trang 108, 109, 110, 111 SGK Toán 11 tập 2 - Cánh Diều Bài 6. Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối. Để tạo mô hình một tháp chuông ở Hình 83a từ một tấm bìa hình vuông...

Câu hỏi:

Hoạt động 2

Để tạo mô hình một tháp chuông ở Hình 83a từ một tấm bìa hình vuông, bạn Dũng cắt bỏ phần màu trắng gồm bốn tam giác cân bằng nhau có đáy là các cạnh của tấm bìa (Hình 83b) rồi gấp lại phần màu xanh để tạo thành một hình chóp tứ giác. Quan sát Hình 83a, 83b và cho biết:

a) Đáy của hình chóp mà bạn Dũng tạo ra là tứ giác có tính chất gì;

b) Các cạnh bên của hình chóp đó có bằng nhau hay không.

image

Hướng dẫn giải :

Quan sát hình ảnh và trả lời câu hỏi.

Lời giải chi tiết :

a) Đáy của hình chóp mà bạn Dũng tạo ra là hình vuông.

b) Các cạnh bên của hình chóp đó bằng nhau.


Câu hỏi:

Luyện tập 2

Cho hình chóp tam giác đều \(S.ABC\). Chứng minh rằng các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau.

Hướng dẫn giải :

Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.

Lời giải chi tiết :

image

Gọi \(O\) là trọng tâm tam giác \(ABC\).

\(\begin{array}{l} \Rightarrow SO \bot \left( {ABC} \right)\\ \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = \left( {SA,OA} \right) = \widehat {SAO},\\\left( {SB,\left( {ABC} \right)} \right) = \left( {SB,OB} \right) = \widehat {SBO},\\\left( {SC,\left( {ABC} \right)} \right) = \left( {SC,OC} \right) = \widehat {SCO}\end{array}\)

Tam giác \(ABC\) đều \( \Rightarrow OA = OB = OC\).

\(\begin{array}{l}SA = SB = SC \Rightarrow \frac{{OA}}{{SA}} = \frac{{OB}}{{SB}} = \frac{{OC}}{{SC}} \Rightarrow \cos \widehat {SAO} = \cos \widehat {SBO} = {\mathop{\rm co}\nolimits} \widehat {sSCO}\\ \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = \left( {SB,\left( {ABC} \right)} \right) = \left( {SC,\left( {ABC} \right)} \right)\end{array}\)


Câu hỏi:

Hoạt động 3

Khối bê tông ở Hình 87a gợi nên hình ảnh một hình chóp bị cắt đi bởi mặt phẳng \(\left( R \right)\) song song với đáy. Hình 87b là hình biểu diễn của khối bê tông ở Hình 87a. Hãy dự đoán về mối quan hệ giữa các đường thẳng chứa các cạnh \({A_1}{B_1},{A_2}{B_2},{A_3}{B_3},{A_4}{B_4}\).

image

Hướng dẫn giải :

Quan sát hình ảnh và trả lời câu hỏi.

Lời giải chi tiết :

Các đường thẳng chứa các cạnh \({A_1}{B_1},{A_2}{B_2},{A_3}{B_3},{A_4}{B_4}\) đồng quy tại một điểm.


Câu hỏi:

Luyện tập 3

Cho hình chóp đều \(S.ABC\). Gọi \(A’,B’,C’\) lần lượt là trung điểm của các đoạn thẳng \(SA,SB,SC\). Chứng minh rằng phần hình chóp đã cho giới hạn bởi hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A’B’C’} \right)\) là hình chóp cụt đều.

Hướng dẫn giải :

Ta cần chứng minh hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A’B’C’} \right)\) song song với nhau.

Lời giải chi tiết :

image

\(A’\) là trung điểm của \(SA\)

\(B’\) là trung điểm của \(SB\)

\( \Rightarrow A’B’\) là đường trung bình của \(\Delta SAB\)

\(\left. \begin{array}{l} \Rightarrow A’B’\parallel AB\\AB \subset \left( {ABC} \right)\end{array} \right\} \Rightarrow A’B’\parallel \left( {ABC} \right)\)

\(A’\) là trung điểm của \(SA\)

\(C’\) là trung điểm của \(SC\)

\( \Rightarrow A’C’\) là đường trung bình của \(\Delta SAC\)

\(\left. \begin{array}{l} \Rightarrow A’C’\parallel AC\\AC \subset \left( {ABC} \right)\end{array} \right\} \Rightarrow A’C’\parallel \left( {ABC} \right)\)

\(\left. \begin{array}{l}A’B’\parallel \left( {ABC} \right)\\A’C’\parallel \left( {ABC} \right)\\A’B’,A’C’ \subset \left( {A’B’C’} \right)\end{array} \right\} \Rightarrow \left( {A’B’C’} \right)\parallel \left( {ABC} \right)\)

Vậy phần hình chóp đã cho giới hạn bởi hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {A’B’C’} \right)\) là hình chóp cụt đều.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK