Tìm giá trị y tương ứng với giá trị của x trong bảng sau:
Dựa vào hàm lôgarit đã học rồi thay số
Cho hai ví dụ về hàm số lôgarit
Dựa vào định nghĩa hàm số lôgarit để xác định
\({\log _3}x;\,\,{\log _5}\left( {x + 2} \right)\)
Cho hàm số lôgarit \(y = {\log _2}x\)
a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:
b, Trong mặt phẳng tọa độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a.
Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;{{\log }_2}x} \right)\) với \(x \in (0; + \infty )\) và nối lại ta được đồ thị hàm số \(y = {\log _2}x\) như hình bên.
c, Cho biết tọa độ giao điểm của đồ thị hàm số \(y = {\log _2}x\) với trục hoành và vị trí của đồ thị hàm số đó với trục tung.
d, Quan sát đồ thị hàm số \(y = {\log _2}x\), nêu nhận xét về:
Áp dụng kiến thức đã học về giới hạn và lôgarit để trả lời câu hỏi
a) \(y = {\log _2}x\)
b, Biểu diễn các điểm ở câu a:
c, Tọa độ giao điểm của đồ thị hàm số với trục hoành \(y = {\log _2}x\)là (1;0)
Đồ thị hàm số đó không cắt trục tung.
d, \(\mathop {\mathop {\lim }\limits_{x \to {0^ + }} ({{\log }_2}x)}\limits_{} = 0;\mathop {\,\,\mathop {\lim }\limits_{x \to + \infty } ({{\log }_2}x)}\limits_{} = + \infty \)
Hàm số \(y = {\log _2}x\) đồng biến trên toàn \((0; + \infty )\)
Bảng biến thiên của hàm số:
Cho hàm số lôgarit \(y = {\log _{\frac{1}{2}}}x\)
a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:
b, Trong mặt phẳng tọa độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a.
Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;{{\log }_{\frac{1}{2}}}x} \right)\) với \(x \in (0; + \infty )\) và nối lại ta được đồ thị hàm số \(y = {\log _{\frac{1}{2}}}x\) như hình bên.
c, Cho biết tọa độ giao điểm của đồ thị hàm số \(y = {\log _{\frac{1}{2}}}x\) với trục hoành và vị trí của đồ thị hàm số đó với trục tung.
d, Quan sát đồ thị hàm số \(y = {\log _{\frac{1}{2}}}x\), nêu nhận xét về:
Áp dụng kiến thức đã học về giới hạn và lũy thừa để trả lời câu hỏi
a) \(y = {\log _{\frac{1}{2}}}x\)
b, Biểu diễn các điểm ở câu a:
c, Tọa độ giao điểm của đồ thị hàm số với trục hoành \(y = {\log _{\frac{1}{2}}}x\)là (1;0)
Đồ thị hàm số đó không cắt trục tung
c) \(\mathop {\lim }\limits_{x \to {0^ + }} {\log _{\frac{1}{2}}}x = 0;\,\,\mathop {\lim }\limits_{x \to + \infty } {\log _{\frac{1}{2}}}x = - \infty \)
Hàm số \(y = {\log _{\frac{1}{2}}}x\) nghịch biến trên toàn \((0; + \infty )\)
Bảng biến thiên của hàm số:
Lập bảng biến thiên và vẽ đồ thị hàm số \(y = {\log _{\frac{1}{3}}}x\)
Dựa vào bảng biến thiên và đồ thị hàm số \(y = {\log _{\frac{1}{2}}}x\) để làm
\(\mathop {\lim }\limits_{x \to {0^ + }} {\log _{\frac{1}{3}}}x = 0;\,\,\mathop {\lim }\limits_{x \to + \infty } {\log _{\frac{1}{3}}}x = - \infty \)
Hàm số \(y = {\log _{\frac{1}{3}}}x\) nghịch biến trên toàn \((0; + \infty )\)
Bảng biến thiên của hàm số:
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK