Trang chủ Lớp 11 SGK Toán 11 - Cánh diều Chương 2 Dãy số - cấp số cộng và cấp số nhân Giải mục 3 trang 55, 56 Toán 11 tập 1 - Cánh Diều: Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\)...

Giải mục 3 trang 55, 56 Toán 11 tập 1 - Cánh Diều: Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\)...

. Giải chi tiết HĐ 3, LT, VD 4 mục 3 trang 55, 56 SGK Toán 11 tập 1 - Cánh Diều Bài 3. Cấp số nhân. Cho cấp số nhân (left( {{u_n}} right)) có số hạng đầu ({u_1}), công bội (q ne 1)Đặt ({S_n} = {u_1} + {u_2} + {u_3} + . . . + {u_n} = {u_1} + {u_1}q + {u_1}{q^2} + . ....

Câu hỏi:

Hoạt động 3

Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\), công bội \(q \ne 1\)

Đặt \({S_n} = {u_1} + {u_2} + {u_3} + ... + {u_n} = {u_1} + {u_1}q + {u_1}{q^2} + ... + {u_1}{q^{n - 1}}\)

a) Tính \({S_n}.q\) và \({S_n} - {S_n}.q\)

b) Từ đó, hãy tìm công thức tính \({S_n}\) theo \({u_1}\) và q

Hướng dẫn giải :

Dựa vào công thức tính cấp số cộng để tính

Lời giải chi tiết :

a) Ta có:

\({S_n}.q = \left( {{u_1} + {u_1}q + {u_1}{q^2} + ... + {u_1}{q^{n - 1}}} \right).q = {u_1}\left( {1 + q + {q^2} + ... + {q^{n - 1}}} \right).q = {u_1}\left( {q + {q^2} + {q^3} + ... + {q^n}} \right)\)

\(\begin{array}{l}{S_n} - {S_n}.q = {u_1} + {u_1}q + {u_1}{q^2} + ... + {u_1}{q^{n - 1}} - {u_1}\left( {q + {q^2} + {q^3} + ... + {q^n}} \right)\\ = {u_1}\left( {1 + q + {q^2} + ... + {q^{n - 1}}} \right) - {u_1}\left( {q + {q^2} + {q^3} + ... + {q^n}} \right)\\ = {u_1}\left( {1 + q + {q^2} + ... + {q^{n - 1}} - \left( {q + {q^2} + {q^3} + ... + {q^n}} \right)} \right)\\ = {u_1}\left( {1 - {q^n}} \right)\end{array}\)

b) Ta có: \({S_n} - {S_n}.q = {u_1}\left( {1 - {q^n}} \right) \Leftrightarrow {S_n}\left( {1 - q} \right) = {u_1}\left( {1 - {q^n}} \right) \Leftrightarrow {S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{\left( {1 - q} \right)}}\)


Câu hỏi:

Luyện tập - VD 4

Tính tổng n số hạng đầu của mỗi cấp số nhân sau:

a) 3; – 6; 12; – 24; ... với n = 12;

b) \(\frac{1}{10},\frac{1}{100},\frac{1}{1000},...\) với n = 5.

Hướng dẫn giải :

Dựa vào công thức tính tổng n số hạng đầu của một cấp số nhân

Lời giải chi tiết :

a) Ta có: 3; – 6; 12; – 24; ... là cấp số nhân với \(u_1 = 3\) và công bội q = – 2.

Khi đó tổng của 12 số hạng đầu của cấp số nhân đã cho là:

\(S_{12}=\frac{3(1−(−2)^{12})}{1−(−2)} = 12 285 \).

b) Ta có: \(\frac{1}{10},\frac{1}{100},\frac{1}{1000},...\) là một cấp số nhân với \(u_1 = \frac{1}{10} \) và công bội \(q=\frac{1}{10}\)

Khi đó tổng của 5 số hạng đầu của cấp số nhân đã cho là:

\(S_5=\frac{\frac{1}{10}(1-(\frac{1}{10})^5)}{1−\frac{1}{10}}= 0,1111\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK