Hai người A và B cùng quan sát một con tàu đang neo đậu ngoài khơi tại vị trí C. Người A đứng trên bờ biển, người B đứng trên một hòn đảo cách bờ một khoảng AB= 100 m. Hai người tiến hành đo đạc và thu được kết quả: \(\widehat {CAB} = {54^0},\widehat {CBA} = {74^0}\) (Hình 22). Hỏi con tàu cách hòn đảo bao xa (làm tròn kết quả đến hàng phần mười theo đơn vị mét)?
Bước 1: Tính số đo góc \(\widehat {ACB}\)
Bước 2: Sử dụng định lí sin để tính độ dài BC của ∆ABC rồi kết luận
Ta có: \(\widehat {ACB} = {180^0} - (\widehat {CBA} + \widehat {CAB}) = {52^0}\)
Áp dụng định lí sin cho ∆ABC ta có: \(\frac{{BC}}{{\sin \widehat {CAB}}} = \frac{{AB}}{{\sin \widehat {ACB}}} \Rightarrow BC = \frac{{AB.\sin \widehat {CAB}}}{{\sin \widehat {ACB}}} = \frac{{100.\sin {{54}^0}}}{{\sin {{52}^0}}} \approx 102,7\)
Vậy con tàu cách hòn đảo 102,7 m
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK