Trang chủ Lớp 10 SBT Toán 10 - Cánh diều Bài tập cuối chương 3 Bài 54 trang 63 SBT toán 10 Cánh diều: Quan sát chiếc Cổng Vàng (Golden Gate bridge) ở Hình 26. Độ cao (h) (feet) tính từ...

Bài 54 trang 63 SBT toán 10 Cánh diều: Quan sát chiếc Cổng Vàng (Golden Gate bridge) ở Hình 26. Độ cao (h) (feet) tính từ...

Giải bài 54 trang 63 SBT toán 10 - Cánh diều - Bài tập cuối chương III

Đề bài :

Quan sát chiếc Cổng Vàng (Golden Gate bridge) ở Hình 26. Độ cao \(h\) (feet) tính từ mặt cầu đến các điểm trên dây treo ở phần giữa hai trụ cầu được xác định bởi công thức \(h\left( x \right) = \frac{1}{{9000}}{x^2} - \frac{7}{{15}}x + 500\), trong đó \(x\) (feet) là khoảng cách từ trụ cầu bên trái đến điểm tương ứng trên dây treo

a) Xác định độ cao của trụ cầu so với mặt cầu theo đơn vị feet.

b) Xác định khoảng cách giữa hai trụ cầu theo đơn vị feet, biết rằng hai trụ cầu này có độ cao bằng nhau

image

Phương pháp giải :

Từ công thức ta tính toán các yêu cầu đề bài

Parabol \(y = a{x^2} + bx + c\): có trục đối xứng là đường thẳng \(x =  - \frac{b}{{2a}}\)

Lời giải chi tiết :

a) Độ cao của trụ cầu ứng với độ cao h tại \(x = 0\)

Tại \(x = 0\) thì \(h\left( 0 \right) = \frac{1}{{9000}}.0 - \frac{7}{{15}}.0 + 500 = 500\) (feet)

Vậy độ cao của trụ cầu so với mặt cầu là 500 feet.

b)

Dễ thấy hai đỉnh trụ cầu đối xứng với nhau qua trục đối xứng của parabol \(h(x)\).

Xác định trục đối xứng của parabol: \(x = \frac{{ - b}}{{2a}} =  - \frac{{ - \frac{7}{{15}}}}{{2.\frac{1}{{9000}}}} = 2100\)

Khoảng cách giữa hai trụ cầu là \(2.2100 = 4200\) (feet)

Cách 2:

Do hai trụ cầu cao bằng nhau nên độ cao của trụ cầu bên phải cũng là 500 feet.

Khoảng cách giữa hai trụ cầu chính là hoành độ (khác 0) của trụ cầu bên phải.

Ta tìm \(x \ne 0\) sao cho \(h(x) = 500\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\\frac{1}{{9000}}{x^2} - \frac{7}{{15}}x + 500 = 500\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\\frac{1}{{9000}}{x^2} - \frac{7}{{15}}x = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\\frac{1}{{9000}}x - \frac{7}{{15}} = 0\end{array} \right. \Leftrightarrow x = \frac{7}{{15}}:\frac{1}{{9000}} = 4200\end{array}\)

Vậy khoảng cách giữa hai trụ là 4200 feet.

 

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK