Trang chủ Lớp 10 Toán lớp 10 - Cánh diều Bài 2. Hoán vị. Chỉnh hợp Mục II trang 12, 13, 14 Toán 10 tập 2 Cánh diều: Cho 3 điểm A, B, C không thẳng hàng. Liệt kê các vectơ (khác 0) có điểm đầu và điểm...

Mục II trang 12, 13, 14 Toán 10 tập 2 Cánh diều: Cho 3 điểm A, B, C không thẳng hàng. Liệt kê các vectơ (khác 0) có điểm đầu và điểm...

Giải mục II trang 12, 13, 14 SGK Toán 10 tập 2 - Cánh diều - Bài 2. Hoán vị. Chỉnh hợp

Hoạt động 3

Cho 3 điểm A, B, C không thẳng hàng. Liệt kê các vectơ (khác 0) có điểm đầu và điểm cuối là 2 trong 3 điểm đã cho.

Lời giải chi tiết :

Có thể tạo được 6 vecto theo yêu cầu đó là: \(\overrightarrow {AB} ,\overrightarrow {BA} ,\overrightarrow {AC} ,\overrightarrow {CA} ,\overrightarrow {BC,} \overrightarrow {CB} \)

Hoạt động 4

Một lớp có 4 nhóm học tập được đặt tên là A, B, C, D. Giáo viên thực hiện hành động sau: chọn 2 nhóm trong 4 nhóm, sau đó sắp xếp thứ tự trình bày của 2 nhóm đã được chọn ra. Nêu 4 kết quả thực hiện hành động của giáo viên.

Lời giải chi tiết :

- Kết quả 1: Chọn 2 nhóm: A và B rồi sắp xếp thứ tự “ A trình bày trước, B trình bày  sau” hoặc “ B trình bày trước, A trình bày  sau”.
- Kết quả 2: Chọn 2 nhóm: A và C rồi sắp xếp thứ tự “ A trình bày  trước, C trình bày  sau” hoặc “ C trình bày  trước, A trình bày sau”.

- Kết quả 3: Chọn 2 nhóm: A và D rồi sắp xếp thứ tự “ A trình bày trước, D trình bày sau” hoặc “ D trình bày trước, A trình bày sau”.

- Kết quả 4: Chọn 2 nhóm: B trình bày và C trình bày rồi sắp xếp thứ tự “ B trình bày trước, C trình bày sau” hoặc “ C trình bày trước, B trình bày sau”.

Hoạt động 5

Một lớp được chia thành 5 nhóm A, B, C, D, E để tham gia hoạt động thực hành trải nghiệm Sau khi các nhóm thực hiện xong hoạt động, giáo viên chọn 3 nhóm trong xếp thứ tự trình bày kết quả hoạt động của 3 nhóm đã được chọn ra.
a) Có bao nhiêu cách chọn nhóm trình bày thứ nhất?
b) Sau khi đã chọn nhóm trình bày thứ nhất, có bao nhiêu cách chọn nhóm trình bày thứ hai?
c) Sau khi đã chọn 2 nhóm trình bày thứ nhất và thứ hai, có bao nhiêu cách chọn nhóm trình bày thứ ba?
d) Với mỗi cách chọn 3 nhóm như trên, giáo viên tạo ra một chỉnh hợp chập 3 của 5 phần tử. Tính số các chỉnh hợp được tạo ra.

Lời giải chi tiết :

a, Có 5 cách chọn nhóm trình bày thứ nhất.

b, Sau khi đã chọn nhóm trình bày thứ nhất, có 4 cách để chọn nhóm trình bày thứ hai.

c, Sau khi đã chọn 2 nhóm trình bày thứ nhất và thứ hai, có 3 cách để chọn nhóm trình bày thứ ba.

d, Theo quy tắc nhân, ta có số chỉnh hợp được tạo ra là: \(5.4.3 = 60\)

Luyện tập – vận dụng 2

Trong vòng đấu loại trực tiếp của một giải bóng đá, nếu sau khi kết thúc 90 phút thi đấu và cả hai hiệp phụ của trận đấu mà kết quả vẫn hoà thì loạt đá luân lưu 11m sẽ được thực hiện. Tính số cách chọn ra và xếp thứ tự 5 cầu thủ đá luân lưu từ đội bóng có 11 cầu thủ.

Lời giải chi tiết :

Mỗi cách chọn ra và xếp thứ tự 5 cầu thủ đá luân lưu từ đội bóng có 11 cầu thủ là một chỉnh hợp chập 5 của 11.

Vậy ta có \(A_{11}^5 = 55440\) (cách chọn ra và xếp thứ tự 5 cầu thủ đá luân lưu từ đội bóng có 11 cầu thủ)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK