Trang chủ Lớp 10 Toán lớp 10 - Cánh diều Bài tập cuối chương 6 Bài 5 trang 54 Toán 10 tập 2 – Cánh diều: Em hãy tìm hiểu chiều cao của tất cả các bạn trong tổ và lập mẫu số liệu với kết quả...

Bài 5 trang 54 Toán 10 tập 2 – Cánh diều: Em hãy tìm hiểu chiều cao của tất cả các bạn trong tổ và lập mẫu số liệu với kết quả...

Giải bài 5 trang 54 SGK Toán 10 tập 2 – Cánh diều - Bài tập cuối chương VI

Đề bài :

Em hãy tìm hiểu chiều cao của tất cả các bạn trong tổ và lập mẫu số liệu với kết quả tăng dần. Với mẫu số liệu đó, hãy tìm:

a) Số trung bình cộng, trung vị và tứ phân vị;

b) Khoảng biến thiên và khoảng tứ phân vị;

c) Phương sai và độ lệch chuẩn.

Phương pháp giải :

a) Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: \({X_1},{X_2},...,{X_n}\)

Bước 2: Số trung bình cộng : \(\overline x  = \frac{{{x_1} + {x_2} + ... + {x_n}}}{n}\) 

Bước 3: Trung vị \({Q_2} = {M_e} = \left\{ \begin{array}{l}{X_{k + 1}}\quad \quad \quad \quad \quad (n = 2k + 1)\\\frac{1}{2}({X_k} + {X_{k + 1}})\quad \;\,(n = 2k)\end{array} \right.\)

\({Q_1}\) là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

\({Q_3}\) là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

b) Khoảng biến thiên: \(R = {X_n} - {X_1}\)

Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} - {Q_1}\)

c) Tính phương sai \({s^2} = \frac{1}{n}\left[ {{{\left( {{x_1} - \overline x } \right)}^2} + {{\left( {{x_2} - \overline x } \right)}^2} + ... + {{\left( {{x_n} - \overline x } \right)}^2}} \right]\)

Độ lệch chuẩn \(s = \sqrt {{s^2}} \)

Lời giải chi tiết :

Ví dụ, ta có bảng đo chiều cao của các bạn trong tổ như sau:

160

162

164

165

172

174

177

178

180

 a) Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:

160   162     164      165      172      174      177      178      180

Số trung bình cộng của mẫu số liệu trên là:

\(\overline x  = \frac{{160\;\; + 162\;\; + 164\;\;\; + \;\;165\;\; + \;172\;\; + \;174\;\; + \;177\; + \;\;178\; + \;180}}{9} = \frac{{1532}}{9}\)

Trung vị của mẫu số liệu trên là: Do mẫu số liệu trên có 9 số liệu ( lẻ ) nên trung vị \({Q_2} = 172\)

 Tứ phân vị của mẫu số liệu trên là:

-  Trung vị của dãy 160   162  164   165 là: \({Q_1} = 163\)

- Trung vị của dãy  174   177  178   180 là: \({Q_3} = 177,5\)

- Vậy tứ phân vị của mẫu số liệu là: \({Q_1} = 163\), \({Q_2} = 172\), \({Q_3} = 177,5\)

b) Khoảng biến thiên của mẫu số liệu trên là: \(R = {x_{\max }} - {x_{\min }} = 180 - 160 = 20\)

Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 177,5 - 163 = 14,5\)

c) Phương sai của mẫu số liệu trên là:

\({s^2} = \frac{{\left[ {{{\left( {160 - \overline x } \right)}^2} + {{\left( {162 - \overline x } \right)}^2} + ... + {{\left( {180 - \overline x } \right)}^2}} \right]}}{9} \approx 50,84\)

Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}}  \approx 7,13\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK