Gợi ý giải câu hỏi Hoạt động 4 trang 106 SGK Toán 9
Thực hiện các hoạt động sau:
a) Chuẩn bị một mặt cầu bằng nhựa (chẳng hạn quả bóng bằng nhựa mỏng) có bán kính là R và một hình trụ bằng bìa cứng (hoặc nhựa mỏng) có bán kính đáy là R và chiều cao là 2R (như Hình 35a) một cuộn dây mảnh, không dãn (chẳng hạn dây len) đủ dài.
b) Dùng cuộn dây đó cuốn dần dần để phủ kín một nửa mặt cầu rồi cắt dây ở điểm cuối cùng (Hình 35b). Như vậy đoạn dây thứ nhất “đã lát kín” một nửa mặt cầu. Tiếp tục dùng cuộn dây đó cuốn dần dần để phủ kín mặt xung quanh của hình trụ và cắt dây ở điểm cuối cùng (Hình 35c). Ta được đoạn dây thứ hai “lát kín” mặt xung quanh của hình trụ đã cho.
Gỡ từng đoạn dây quấn quanh nửa mặt cầu và mặt xung quanh của hình trụ nói trên, ta thấy hai đoạn dây đó có độ dài bằng nhau.
Do hai đoạn dây lần lượt lát kín một nửa mặt cầu, mặt xung quanh của hình trụ và độ dài hai đoạn dây đó bằng nhau nên ta có thể coi hai mặt đó có diện tích bằng nhau.
c) Tính diện tích xung quanh của hình trụ có bán kính đáy là R và chiều cao là 2R. Từ đó, hãy nêu dự đoán về công thức tính diện tích của mặt cầu bán kính R.
a,b: Làm theo yêu cầu.
c) Áp dụng công thức tính diện tích xung quanh hình trụ \({S_{xq}} = 2\pi rh\), dự đoán diện tích mặt cầu.
a) Chuẩn bị các vật thể: quả bóng bàn, hình trụ theo kích thước của quả bóng, cuộn dây.
b) Đánh dấu 1 nửa hình cầu, cuốn dây để lát kính nửa mặt cầu đó.
Dùng đoạn dây khác lát kín mặt xung quanh của hình trụ.
Gỡ 2 đoạn dây đó và thấy độ dài 2 đoạn dây bằng nhau nên hai mặt đó có diện tích bằng nhau.
c) Diện tích xung quanh hình trụ là:
\({S_{xq}} = 2\pi rh = 2\pi .R.2R = 4\pi {R^2}.\)
Vì diện tích xung quanh của hình trụ bằng diện tích mặt cầu nên diện tích mặt cầu là \(S = 4\pi {R^2}.\)
Hướng dẫn giải câu hỏi Luyện tập 2 trang 107SGK Toán 9
Một quả bóng đá theo tiêu chuẩn chuyên nghiệp (cho cả nam và nữ, từ khoảng 11, 12 tuổi trở lên), thường nặng khoảng 450 g, có chu vi đường tròn lớn khoảng 70 cm. Diện tích bề mặt của quả bóng đá như thế bằng bao nhiêu centimét vuông (làm tròn kết quả đến hàng phần trăm)?
Từ công thức tính chu vi đường tròn \(C = \pi 2R\), ta tính được bán kính R của quả bóng.
Áp dụng công thức tính diện tích mặt cầu (\(S = 4\pi {R^2}\)) để tính diện tích bề mặt quả bóng.
Ta có: \(C = \pi 2R\) nên bán kính quả bóng là:
\(R = \frac{C}{{2\pi }} = \frac{{70}}{{2\pi }} = \frac{{35}}{\pi }\left( {cm} \right).\)
Diện tích bề mặt quả bóng là:
\(S = 4\pi {R^2} = 4\pi {\frac{{35}}{{{\pi ^2}}}^2} \approx 1560,51\left( {c{m^2}} \right).\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK