Một chiếc máy quay ở đài truyền hình được đặt trên giá đỡ 3 chân, các điểm tiếp xúc với mặt đất của 3 chân lần lượt là 3 đỉnh A, B, C của tam giác đều ABC (Hình 16). Tính khoảng cách giữa 2 vị trí A và B, biết bán kính đường tròn ngoại tiếp tam giác ABC là 4 dm.
Bước 1: Áp dụng tính chất đường trung tuyến của tam giác để tính AM.
Bước 2: Biểu diễn BM theo BC và AB.
Bước 3: Áp dụng định lý Pytago trong tam giác AMB để tính cạnh AB.
Gọi (O; OM) là đường tròn ngoại tiếp tam giác đều ABC nên O là giao điểm của phân giác AM, BN; và OA = 4dm.
AM là đường phân giác của tam giác đều ABC nên AM đồng thời là đường cao do đó \(\widehat {AMB} = 90^\circ \); và cũng là đường trung tuyến suy ra \(AM = \frac{3}{2}OA = \frac{3}{2}.4 = 6dm\) và \(BM = \frac{{BC}}{2} = \frac{{AB}}{2}.\)
Áp dụng định lý Pytago trong tam giác AMB vuông tại M:
\(\begin{array}{l}A{B^2} = A{M^2} + M{B^2}\\A{B^2} = {6^2} + {\frac{{AB}}{4}^2}\\\frac{{3A{B^2}}}{4} = 36\\AB = 4\sqrt 3 dm.\end{array}\)
Vậy khoảng cách A và B là \(4\sqrt 3 dm.\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK