Trang chủ Lớp 9 SGK Toán 9 - Cánh diều Chương 5. Đường tròn Giải mục 3 trang 115, 116 Toán 9 Cánh diều tập 1: Trong Hình 55, đỉnh của góc \(AIB\) có thuộc đường tròn hay không?...

Giải mục 3 trang 115, 116 Toán 9 Cánh diều tập 1: Trong Hình 55, đỉnh của góc \(AIB\) có thuộc đường tròn hay không?...

Phân tích và lời giải HĐ3, LT3, HĐ4, LT4, HĐ5, LT5 mục 3 trang 115, 116 SGK Toán 9 tập 1 - Cánh diều Bài 4. Góc ở tâm. Góc nội tiếp. Trong Hình 55, đỉnh của góc (AIB) có thuộc đường tròn hay không? Hai cạnh của góc chứa hai dây cung nào của đường tròn?...

Câu hỏi:

Hoạt động3

Trả lời câu hỏi Hoạt động 3 trang 115

Trong Hình 55, đỉnh của góc \(AIB\) có thuộc đường tròn hay không? Hai cạnh của góc chứa hai dây cung nào của đường tròn?

image

Hướng dẫn giải :

Dựa vào hình ảnh trực quan để đưa ra nhận xét.

Lời giải chi tiết :

- Đỉnh của góc \(AIB\) có thuộc đường tròn.

- Hai cạnh của góc chứa hai dây cung \(IA,IB\) của đường tròn.


Câu hỏi:

Luyện tập3

Trả lời câu hỏi Luyện tập 3 trang 115

Hãy vẽ một đường tròn và hai góc nội tiếp trong đường tròn đó.

Hướng dẫn giải :

Dựa vào kiến thức vừa học để vẽ hình.

Lời giải chi tiết :

image


Câu hỏi:

Hoạt động4

Trả lời câu hỏi Hoạt động 4 trang 115

Cho góc \(AIB\) nội tiếp đường tròn tâm \(O\) đường kính \(IK\) sao cho tâm \(O\) nằm trong góc đó (Hình 57).

image

a) Các cặp góc \(\widehat {OAI}\) và \(\widehat {OIA};\widehat {OBI}\) và \(\widehat {OIB}\) có bằng nhau hay không?

b) Tính các tổng \(\widehat {AOI} + 2\widehat {OIA},\widehat {BOI} + 2\widehat {OIB}\).

c) Tính các tổng \(\widehat {AOI} + \widehat {AOK},\widehat {BOI} + \widehat {BOK}\).

d) So sánh \(\widehat {AOK}\) và \(2\widehat {OIA},\widehat {BOK}\) và \(2\widehat {OIB},\widehat {AOB}\) và \(2\widehat {AIB}\).

Hướng dẫn giải :

Dựa vào các kiến thức đã học về đường tròn để xác định.

Lời giải chi tiết :

a) Do \(OI = OA = R\) nên tam giác \(IOA\) cân tại \(O\) suy ra \(\widehat {OAI} = \widehat {OIA}\)

Do \(OI = OB = R\) nên tam giác \(IOB\) cân tại \(O\) suy ra \(\widehat {OBI} = \widehat {OIB}\)

b) Xét tam giác \(AOI\) cân tại \(O\) có:

\(\widehat {AOI} + \widehat {OIA} + \widehat {OAI} = 180^\circ \Rightarrow \widehat {AOI} + \widehat {OIA} + \widehat {OIA} = 180^\circ \Rightarrow \widehat {AOI} + 2\widehat {OIA} = 180^\circ \)

Xét tam giác \(BOI\) cân tại \(O\) có:

\(\widehat {BOI} + \widehat {OIB} + \widehat {OBI} = 180^\circ \Rightarrow \widehat {BOI} + \widehat {OIB} + \widehat {OIB} = 180^\circ \Rightarrow \widehat {BOI} + 2\widehat {OIB} = 180^\circ \)

c) Ta có: \(\widehat {AOI} + \widehat {AOK} = 180^\circ \) (hai góc kề bù)

\(\widehat {BOI} + \widehat {BOK} = 180^\circ \) (hai góc kề bù)

d) Do \(\widehat {AOI} + 2\widehat {OIA} = 180^\circ \) lại có \(\widehat {AOI} + \widehat {AOK} = 180^\circ \) nên \(2\widehat {OIA} = \widehat {AOK}\)

Do \(\widehat {BOI} + 2\widehat {OIB} = 180^\circ \) lại có \(\widehat {BOI} + \widehat {BOK} = 180^\circ \) nên \(2\widehat {OIB} = \widehat {BOK}\)

Ta có: \(\widehat {OIA} + \widehat {OIB} = \widehat {AIB} \Rightarrow 2\left( {\widehat {OIA} + \widehat {OIB}} \right) = 2\widehat {AIB} \Rightarrow 2\widehat {OIA} + 2\widehat {OIB} = 2\widehat {AIB}\)

Mà \(2\widehat {OIA} = \widehat {AOK},2\widehat {OIB} = \widehat {BOK}\) nên \(\widehat {AOK} + \widehat {BOK} = 2\widehat {AIB} \Rightarrow \widehat {AOB} = 2\widehat {AIB}\)


Câu hỏi:

Luyện tập4

Trả lời câu hỏi Luyện tập 4 trang 116

Cho đường tròn \(\left( {O;R} \right)\) và dây cung \(AB = R\). Điểm \(C\) thuộc cung lớn \(AB,C\) khác \(A\) và \(B\). Tính số đo góc \(ACB\).

Hướng dẫn giải :

Dựa vào kiến thức vừa học về góc nội tiếp và góc ở tâm để tính.

Lời giải chi tiết :

image

Xét tam giác \(OAB\) có: \(OA = OB = AB = R\).

Suy ra tam giác \(OAB\) là tam giác đều nên \(\widehat {AOB} = 60^\circ \).

Xét đường tròn \(\left( O \right)\): Vì \(\widehat {AOB}\) là góc ở tâm và \(\widehat {ACB}\) là góc nội tiếp cùng chắn cung \(AB\) nên:

\(\widehat {ACB} = \frac{1}{2}\widehat {AOB} = \frac{1}{2}.60^\circ = 120^\circ \).

Vậy \(\widehat {ACB} = 120^\circ \).


Câu hỏi:

Hoạt động5

Trả lời câu hỏi Hoạt động 5 trang 116

Quan sát Hình 60 và nêu mối liên hệ giữa

a) \(\widehat {AIB}\) và sđ$\overset\frown{AmB}$;

b) \(\widehat {AKB}\) và sđ$\overset\frown{AmB}$;

c) \(\widehat {AIB}\) và \(\widehat {AKB}\).

image

Hướng dẫn giải :

Dựa vào kiến thức “Góc nội tiếp có số đo bằng nửa số đo cung bị chắn” để làm bài.

Lời giải chi tiết :

a) Ta thấy: \(\widehat {AIB}\) là góc nội tiếp chắn $\overset\frown{AmB}$ nên $\widehat{AIB}=\frac{1}{2}sđ\overset\frown{AmB}$.

b) Ta thấy: \(\widehat {AKB}\) là góc nội tiếp chắn $\overset\frown{AmB}$ nên $\widehat{AKB}=\frac{1}{2}sđ\overset\frown{AmB}$.

c) Do $\widehat{AIB}=\frac{1}{2}sđ\overset\frown{AmB};\widehat{AKB}=\frac{1}{2}sđ\overset\frown{AmB}$ nên \(\widehat {AIB} = \widehat {AKB}\).


Câu hỏi:

Luyện tập5

Trả lời câu hỏi Luyện tập 5 trang 119

Trong Hình 61, gọi \(I\) là giao điểm của \(AD\) và \(BC\). Chứng minh \(IA.ID = IB.IC\).

image

Hướng dẫn giải :

Dựa vào tính chất góc nội tiếp để chứng minh.

Lời giải chi tiết :

image

Ta có: \(\widehat {ACB}\) và \(\widehat {ADB}\) là hai góc nội tiếp chắn cung \(AB\) nên \(\widehat {ACB} = \widehat {ADB}\) hay \(\widehat {ACI} = \widehat {BDI}\).

Do \(\widehat {CIA}\) và \(\widehat {DIB}\) là hai góc đối đỉnh nên \(\widehat {CIA} = \widehat {DIB}\).

Xét \(\Delta CIA\) và \(\Delta DIB\) có:

$\left\{ \begin{align}\widehat{ACI}=\widehat{BDI} \\ \widehat{CIA}=\widehat{DIB} \end{align} \right.\Rightarrow \Delta CIA\backsim \Delta DIB\left( g.g \right) \Rightarrow \frac{CI}{DI}=\frac{IA}{IB}\Rightarrow IA.ID=IC.IB.$

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK