Trang chủ Lớp 9 SGK Toán 9 - Cánh diều Bài 4. Một số phép biến đổi căn thức bậc hai của biểu thức đại số Giải mục 4 trang 69, 70 Toán 9 Cánh diều tập 1: Xét phép biến đổi: \(\frac{5}{{\sqrt 3 }} = \frac{{5\sqrt 3 }}{{\left( {\sqrt 3 } \right)_{}^2}} = \frac{{5\sqrt 3 }}{3}\)...

Giải mục 4 trang 69, 70 Toán 9 Cánh diều tập 1: Xét phép biến đổi: \(\frac{5}{{\sqrt 3 }} = \frac{{5\sqrt 3 }}{{\left( {\sqrt 3 } \right)_{}^2}} = \frac{{5\sqrt 3 }}{3}\)...

Phân tích và giải HĐ4, LT4, LT5, LT6 mục 4 trang 69, 70 SGK Toán 9 tập 1 - Cánh diều Bài 4. Một số phép biến đổi căn thức bậc hai của biểu thức đại số. Xét phép biến đổi: \(\frac{5}{{\sqrt 3 }} = \frac{{5\sqrt 3 }}{{\left( {\sqrt 3 } \right)_{}^2}} = \frac{{5\sqrt 3 }}{3}\). Hãy xác định mẫu thức của mỗi biểu thức sau: \(\frac{5}{{\sqrt 3 }};\frac{{5\sqrt 3 }}{3}\)...

Câu hỏi:

Hoạt động4

Trả lời câu hỏi Hoạt động 4 trang 69

Xét phép biến đổi: \(\frac{5}{{\sqrt 3 }} = \frac{{5\sqrt 3 }}{{\left( {\sqrt 3 } \right)_{}^2}} = \frac{{5\sqrt 3 }}{3}\). Hãy xác định mẫu thức của mỗi biểu thức sau: \(\frac{5}{{\sqrt 3 }};\frac{{5\sqrt 3 }}{3}\).

Hướng dẫn giải :

Dựa vào kiến thức về phân số để xác định mẫu thức của mỗi biểu thức.

Lời giải chi tiết :

+ Mẫu thức của phân số \(\frac{5}{{\sqrt 3 }}\) là \(\sqrt 3 \).

+ Mẫu thức của phân số \(\frac{{5\sqrt 3 }}{3}\) là 3.


Câu hỏi:

Luyện tập4

Trả lời câu hỏi Luyện tập 4 trang 69

Trục căn thức ở mẫu: \(\frac{{x_{}^2 - 1}}{{\sqrt {x - 1} }}\) với \(x > 1\).

Hướng dẫn giải :

+ Tìm biểu thức có thể làm mất căn thức ở dưới mẫu;

+ Nhân cả tử và mẫu với biểu thức vừa tìm được để trục căn thức ở mẫu.

Lời giải chi tiết :

Ta có: \(\frac{{{x^2} - 1}}{{\sqrt {x - 1} }}\)\( = \frac{{\left( {{x^2} - 1} \right).\sqrt {x - 1} }}{{\sqrt {x - 1} .\sqrt {x - 1} }}\)\( = \frac{{\left( {x - 1} \right)\left( {x + 1} \right)\sqrt {x - 1} }}{{x - 1}}\)\( = \left( {x + 1} \right)\sqrt {x - 1} \).


Câu hỏi:

Luyện tập5

Trả lời câu hỏi Luyện tập 5 trang 69

Trục căn thức ở mẫu: \(\frac{{x - 1}}{{\sqrt x - 1}}\) với \(x > 1\).

Hướng dẫn giải :

+ Tìm biểu thức có thể làm mất căn thức ở dưới mẫu;

+ Nhân cả tử và mẫu với biểu thức vừa tìm được để trục căn thức ở mẫu.

Lời giải chi tiết :

Ta có: \(\frac{{x - 1}}{{\sqrt x - 1}}\)\( = \frac{{\left( {x - 1} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\)\( = \frac{{\left( {x - 1} \right)\left( {\sqrt x + 1} \right)}}{{x - 1}}\)\( = \sqrt x + 1\).


Câu hỏi:

Luyện tập6

Trả lời câu hỏi Luyện tập 6 trang 70

Trục căn thức ở mẫu: \(\frac{1}{{\sqrt {x + 1} - \sqrt x }}\) với \(x \ge 0\).

Hướng dẫn giải :

+ Tìm biểu thức có thể làm mất căn thức ở dưới mẫu;

+ Nhân cả tử và mẫu với biểu thức vừa tìm được để trục căn thức ở mẫu.

Lời giải chi tiết :

Ta có: \(\frac{1}{{\sqrt {x + 1} - \sqrt x }}\)\( = \frac{{\sqrt {x + 1} + \sqrt x }}{{\left( {\sqrt {x + 1} - \sqrt x } \right)\left( {\sqrt {x + 1} + \sqrt x } \right)}}\)\( = \frac{{\sqrt {x + 1} + \sqrt x }}{{x + 1 - x}}\)\( = \sqrt {x + 1} + \sqrt x \).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK