Trang chủ Lớp 8 SBT Toán 8 - Cánh diều Chương 8. Tam giác đồng dạng. Hình đồng dạng Bài 30 trang 70 SBT Toán 8 – Cánh diều: Các điểm \(E, F\) lấy ở vị trí nào trên các cạnh \(BC, AD\) thì \(MN\) có độ dài nhỏ nhất?...

Bài 30 trang 70 SBT Toán 8 – Cánh diều: Các điểm \(E, F\) lấy ở vị trí nào trên các cạnh \(BC, AD\) thì \(MN\) có độ dài nhỏ nhất?...

Dựa vào tính chất của hai tam giác đồng dạng: - Mỗi tam giác đồng dạng với chính nó Nếu \(\Delta A’B’C’\backsim \Delta ABC\) thì \(\Delta ABC\backsim \Delta A’B’C’\). Lời giải bài tập, câu hỏi bài 30 trang 70 sách bài tập toán 8 – Cánh diều - Bài 5. Tam giác đồng dạng. Cho hình vuông \(ABCD\) cạnh bằng \(a\). Lấy điểm \(E\) thuộc cạnh \(BC\),... Các điểm \(E,F\) lấy ở vị trí nào trên các cạnh \(BC,AD\) thì \(MN\) có độ dài nhỏ nhất?

Đề bài :

Cho hình vuông \(ABCD\) cạnh bằng \(a\). Lấy điểm \(E\) thuộc cạnh \(BC\), điểm \(F\) thuộc cạnh \(AD\) sao cho \(CE=AF\). Các đường thẳng \(AE,BF\) cắt đường thẳng \(DC\) lần lượt tại \(M\) và \(N\). Các đường thẳng \(NA,MB\) cắt nhau tại \(K\).

a) Chứng minh: \(\Delta KAB\backsim \Delta KNM;\Delta CEM\backsim \Delta DAM;\Delta NFD\backsim \Delta NBC\).

b) So sánh \(CM.DN\) và \(A{{B}^{2}}\).

c) Các điểm \(E,F\) lấy ở vị trí nào trên các cạnh \(BC,AD\) thì \(MN\) có độ dài nhỏ nhất?

Hướng dẫn giải :

Dựa vào tính chất của hai tam giác đồng dạng:

- Mỗi tam giác đồng dạng với chính nó

Nếu \(\Delta A’B’C’\backsim \Delta ABC\) thì \(\Delta ABC\backsim \Delta A’B’C’\).

Nếu \(\Delta A”B”C”\backsim \Delta A’B’C’\) và \(\Delta A’B’C’\backsim \Delta ABC\) thì \(\widehat{A}=\widehat{A”},\widehat{B}=\widehat{B”},\widehat{C}=\widehat{C”}\).

- Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh thứ ba thì nó tạo thành một tam giác mới đồng dạng với tam giác đã cho.

Lời giải chi tiết :

image

a) Vì \(AB//MN\) nên \(\Delta KAB\backsim \Delta KMN\).

Vì \(CE//AD\) nên \(\Delta CEM\backsim \Delta DAM\)

Vì \(DF//BC\) nên \(\Delta NFD\backsim \Delta NBC\).

b) Vì \(\Delta CEM\backsim \Delta BEA\) nên \(\frac{CM}{BA}=\frac{CE}{BE}\) (1)

Vì \(\Delta NDF\backsim \Delta BAF\) nên \(\frac{AF}{FD}=\frac{BA}{DN}\) (2)

Từ (1) và (2) và \(CE=AF,BE=DF\), ta có \(\frac{CM}{BA}=\frac{CE}{BE}=\frac{AF}{FD}=\frac{BA}{DN}\).

Do đó \(CM.DN=A{{B}^{2}}\).

c) Ta có \({{\left( CM-DN \right)}^{2}}\ge 0\), suy ra \({{\left( CM+DN \right)}^{2}}\ge 4CM.DN\) hay \(CM+DN\ge 2\sqrt{CM.DN}=2AB\). Do đó \(MN=DN+CD+CM\ge 3AB\) (vì \(AB=CD\)). Vậy \(MN\) có độ dài nhỏ nhất bằng \(3AB\). Dấu “=” xảy ra khi \(CM=DN=a\) hay \(E,F\) lần lượt là trung điểm của \(BC\) và \(AD\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK