Trang chủ Lớp 8 SBT Toán 8 - Cánh diều Chương 5. Tam giác. Tứ giác Bài 33 trang 102 SBT Toán 8 - Cánh diều: Cho hình bình hành \(ABCD\). Ở phía ngoài hình bình hành, vẽ các hình vuông \(ABEF\) và \(ADGH\) (Hình 26)...

Bài 33 trang 102 SBT Toán 8 - Cánh diều: Cho hình bình hành \(ABCD\). Ở phía ngoài hình bình hành, vẽ các hình vuông \(ABEF\) và \(ADGH\) (Hình 26)...

Dựa vào các trường hợp bằng nhau của tam giác và tính chất của hình vuông: Trong một hình vuông. Lời giải bài tập, câu hỏi bài 33 trang 102 sách bài tập toán 8 - Cánh diều - Bài 7. Hình vuông. Cho hình bình hành \(ABCD\). Ở phía ngoài hình bình hành, vẽ các hình vuông \(ABEF\) và \(ADGH\) (Hình 26)....

Đề bài :

Cho hình bình hành \(ABCD\). Ở phía ngoài hình bình hành, vẽ các hình vuông \(ABEF\) và \(ADGH\) (Hình 26). Chứng minh:

a) \(\Delta AHF = \Delta ADC\)

b) \(AC \bot HF\).

image

Hướng dẫn giải :

Dựa vào các trường hợp bằng nhau của tam giác và tính chất của hình vuông:

Trong một hình vuông,

- Các cạnh đối song song

- Hai đường chéo bằng nhau, vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường.

- Hai đường chéo là các đường phân giác của các góc ở đỉnh.

Lời giải chi tiết :

image

Gọi \(K\) là giao điểm của \(AC\) và \(HF\)

a) Do \(ABEF\) và \(ADGH\) đều là hình vuông nên\(\widehat {BAF} = \widehat {DAH} = 90^\circ ,AH = BA,AH = DA\)

Do \(ABCD\) là hình bình hành nên \(BA = DC\). Suy ra \(AF = DC\)

Ta chứng minh được \(\widehat {HAF} + \widehat {DAB} = 180^\circ \) và \(\widehat {ADC} + \widehat {DAB} = 180^\circ \)

Suy ra \(\widehat {HAF} = \widehat {ADC}\)

Xét hai tam giác \(HAF\) và \(ADC\), ta có: \(AH = DA,\widehat {HAF} = \widehat {ADC},AF = DA\)

Suy ra \(\Delta HAF = \Delta ADC\) (c.g.c)

b) Ta có: \(\widehat {HAK} + \widehat {DAH} + \widehat {DAC} = \widehat {CAK} = 180^\circ \) và \(\widehat {DAH} = 90^\circ \) nên \(\widehat {HAK} + \widehat {DAC} = 90^\circ \)

Mà \(\widehat {AHF} = \widehat {DAC}\) (vì \(\Delta HAF = \Delta ADC\)), suy ra \(\widehat {HAK} + \widehat {AHF} = 90^\circ \)

Trong tam giác \(AHK\), ta có: \(\widehat {AKH} + \widehat {HAK} + \widehat {AHF} = 180^\circ \). Suy ra \(\widehat {AKH} = 90^\circ \)

Vậy \(AK \bot HK\) hai \(AC \bot HF\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK