Cho hình vuông \(ABCD\). Lấy điểm \(M\) thuộc đường chéo \(BD\). Kẻ \(ME\) vuông góc với \(AB\) tại \(E\),\(MF\) vuông góc với \(AD\) tại \(F\).
a) Chứng minh: \(DE = CF;DE \bot CF\).
b) Chứng minh ba đường thẳng \(DE,BF,CM\) cùng đi qua một điểm.
c) Xác định vị trí của điểm \(M\) trên đường chéo \(BD\) để diện tích của tứ giác \(AEMF\) lớn nhất.
Dựa vào tính chất và dấu hiệu nhận biết của hình vuông, hình chữ nhật, hình bình hành và công thức tính diện tích tam giác để chứng minh.
Gọi \(H\) là giao điểm của \(DE\) và \(CF\), \(K\) là giao điểm của \(CM\) và \(EF\).
Do \(ABCD\) là hình vuông nên ta có:
\(\widehat {DAB} = 90^\circ ,CD = DA,\widehat {ADB} = \widehat {ABD} = \widehat {DBC} = 45^\circ \)
a) Ta chứng minh được tam giác \(FDM\) vuông cân tại \(F\).
Suy ra \(FM = DF\)
Tứ giác \(AEMF\) có \(\widehat {MFA} = \widehat {FAE} = \widehat {AEM} = 90^\circ \) nên \(AEMF\) là hình chữ nhật. Suy ra \(AE = FM\).
Do đó \(AE = DF\) (vì cùng bằng \(FM\))
\(\Delta ADE = \Delta DCF\) (c.g.c). Suy ra \(DE = CF\), \(\widehat {AED} = \widehat {DFC}\).
Trong tam giác \(ADE\) vuông tại \(A\), ta có: \(\widehat {AED} + \widehat {ADE} = 90^\circ \)
Suy ra \(\widehat {DFC} + \widehat {ADE} = 90^\circ \) hay \(\widehat {DFH} + \widehat {FHD} = 90^\circ \). Từ đó ta tính được \(\widehat {DHF} = 90^\circ \). Vậy \(DE \bot CF\).
b) Tương tự câu a, ta chứng minh được \(BF \bot CE\).
\(\Delta ABM = \Delta CBM\) (c.g.c). Suy ra \(AM = CM\). Mà \(EF = AM\) (vì \(AEMF\) là hình chữ nhật) suy ra \(EF = CM\).
\(\Delta DEF = \Delta FCM\) (c.c.c). Suy ra \(\widehat {DEF} = \widehat {FCM}\) hay \(\widehat {FEH} = \widehat {FCK}\)
Trong tam giác \(HEF\) vuông tại \(H\), ta có \(\widehat {FEH} + \widehat {EFH} = 90^\circ \)
Suy ra \(\widehat {FCK} + \widehat {EFH} = 90^\circ \) hay \(\widehat {FCK} + \widehat {KFC} = 90^\circ \). Từ đó, ta tính được \(\widehat {CKF} = 90^\circ \). Do đó, \(CK \bot EF\).
Trong tam giác \(CEF\), ta có: \(DE \bot CF,BF \bot CE,CM \bot EF\) nên ba đường thẳng \(DE,BF,CM\) là các đường cao của tam giác \(CEF\). Vậy ba đường thẳng \(DE,BF,CM\) cùng đi qua một điểm.
c) Chu vi của hình chữ nhật \(AEMF\) là: \(2\left( {AE + AF} \right) = 2\left( {DF + AF} \right) = 2AD\)
Mà \(AD\) không đổi nên chu vi của hình chữ nhật \(AEMF\) không đổi. Do đó, diện tích của tứ giác \(AEMF\) lớn nhất khi \(AEMF\) là hình vuông. Suy ra \(ME = MF\).
Khi đó \(\Delta BEM = \Delta DFM\) (cạnh góc vuông – góc nhọn kề). Suy ra \(BM = DM\) hay \(M\) là trung điểm của \(BC\)
Vậy với \(M\) là trung điểm của \(BC\) thì diện tích của tứ giác \(AEMF\) lớn nhất.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK