Cho các hình bình hành ABCD và BMNP như ở Hình 67. Chứng minh:
a) \(\frac{{BM}}{{BA}} = \frac{{BP}}{{BC}}\)
b) \( \Delta{MNP} \backsim \Delta{CBA}\)
a) Dựa vào định lí Thales suy ra được các tỉ số bằng nhau.
b) Chứng minh MP // AC, suy ra các tỉ số bằng nhau của tam giác PBM và tam giác CBA
BMNP là hình bình hành suy ra các tỉ số bằng nhau của tam giác PBM và tam giác CBA
Từ đó ta suy ra điều phải chứng minh.
a) Vì ABCD và BMNP là hình bình hành nên \(MN//BP\) và \(AD//BC \Rightarrow MN//AD\)
Xét tam giác ABD có \(AD//MN \Rightarrow \frac{{BM}}{{BA}} = \frac{{BN}}{{BD}}\) (1) (Định lý Thales)
Tương tự ta chứng minh được \(NP//DC \Rightarrow \frac{{BN}}{{BD}} = \frac{{BP}}{{BC}}\)(2)
Từ (1) và (2) ta có \(\frac{{BM}}{{BA}} = \frac{{BP}}{{BC}}\).
b) Ta có \(\frac{{BM}}{{BA}} = \frac{{BP}}{{BC}} \Rightarrow MP//AC\)(Định lý Thales đảo)
\( \Rightarrow \Delta PBM \backsim\Delta CBA\) (c-c-c) (3)
Vì BMNP là hình bình hành nên ta có \(\frac{{PB}}{{MN}} = \frac{{BM}}{{NP}} = \frac{{MP}}{{PM}} = 1\)
\( \Rightarrow \Delta PBM \backsim\Delta MNP\) (c-c-c) (4)
Từ (3) và (4) ta có \(\Delta MNP \backsim\Delta CBA\).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK