Cho tam giác nhọn ABC, hai đường cao AD và BE cắt nhau tại H. Chứng minh:
a) \(\Delta ACD \backsim \Delta BCE\) và \(CA.CE = CB.CD\)
b) \(\Delta ACD \backsim \Delta AHE\) và \(AC.AE = AD.AH\)
Chứng minh hai tam giác đồng dạng theo trường hợp đồng dạng thứ ba rồi suy ra hệ số đồng dạng tương ứng.
a) Xét tam giác ACD và tam giác BCE có:
\(\widehat {ADC} = \widehat {BEC} = 90^\circ ;\,\,\widehat C\) chung
\( \Rightarrow \Delta ACD \backsim \Delta BCE\) (g-g)
\( \Rightarrow \frac{{CA}}{{CB}} = \frac{{CD}}{{CE}}\) (Tỉ số đồng dạng) \( \Rightarrow CA.CE = CB.CD\)
b) Xét tam giác ACD và tam giác AHE có:
\(\widehat {ADC} = \widehat {AEH} = 90^\circ ;\,\,\widehat A\) chung
\( \Rightarrow \Delta ACD \backsim \Delta AHE\) (g-g)
\( \Rightarrow \frac{{AC}}{{AH}} = \frac{{AD}}{{AE}}\) (Tỉ số đồng dạng)
\( \Rightarrow AC.AE = AD.AH\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK