Trang chủ Lớp 7 SBT Toán 7 - Cánh diều Bài 6. Trường hợp bằng nhau thứ ba của tam giác: góc- cạnh - góc Bài 41 trang 81 SBT Toán 7 Cánh diều: Cho tam giác ABC có ba góc đều nhọn và ˆA=60°.A^=60°.Tia phân giác của góc ABC cắt A...

Bài 41 trang 81 SBT Toán 7 Cánh diều: Cho tam giác ABC có ba góc đều nhọn và ˆA=60°.A^=60°.Tia phân giác của góc ABC cắt A...

Giải Bài 41 trang 81 sách bài tập toán 7 - Cánh diều - Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc

Đề bài :

Cho tam giác ABC có ba góc đều nhọn và ˆA=60°.A^=60°.Tia phân giác của góc ABC cắt AC tại D, tia phân giác của góc ACB cắt AB tại E. BD cắt CE tại I. Tia phân giác của góc BIC cắt BC tại F. Chứng minh:

a) \(\widehat {BIC} = 120^\circ \)

b) ∆BEI = ∆BFI;

c) BC = BE + CD.

Phương pháp giải :

- Dựa tính chất tia phân giác của một góc và tổng ba góc trong một tam giác để chứng minh \(\widehat {BIC} = 120^\circ \)

- Xét các điều kiện về cạnh, về góc để chứng minh ∆BEI = ∆BFI (g – c – g)

- Từ các tam giác bằng nhau suy ra các cạnh tương ứng bằng nhau dẫn tới chứng minh BC = BE + CD.

Lời giải chi tiết :

 image

a) Vì BD là phân giác của góc ABC nên \(\widehat {ABD} = \widehat {CBD} = \frac{{\widehat {ABC}}}{2}\)

Vì CE là phân giác của góc ACB nên \(\widehat {ACE} = \widehat {ECB} = \frac{{\widehat {ACB}}}{2}\)

Xét ∆ABC có: \(\hat A + \widehat {ABC} + \widehat {ACB} = 180^\circ \) (tổng ba góc của một tam giác)

Suy ra\(\widehat {ABC} + \widehat {ACB} = 180^\circ  - \hat A = 180^\circ  - 60^\circ  = 120^\circ \)

Xét ∆IBC có: \(\widehat {BIC} + \widehat {IBC} + \widehat {ICB} = 180^\circ \) (tổng ba góc của một tam giác)

Hay \(\widehat {BIC} + \frac{{\widehat {ABC}}}{2} + \frac{{\widehat {ACB}}}{2} = 180^\circ \)

Suy ra \(\widehat {BIC} = 180^\circ  - \frac{{\widehat {ABC} + \widehat {ACB}}}{2} = 180^\circ  - \frac{{120^\circ }}{2} = 120^\circ \)

 Vậy \(\widehat {BIC} = 120^\circ .\)

b) Vì IF là phân giác của góc BIC nên \(\widehat {BIF} = \widehat {CIF} = \frac{{\widehat {BIC}}}{2} = \frac{{120^\circ }}{2} = 60^\circ \)

 Ta có \(\widehat {BIC} + \widehat {BIE} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {BIE} = 180^\circ  - \widehat {BIC} = 180^\circ  - 120^\circ  = 60^\circ \)

Xét ∆BEI và ∆BFI có:

\(\widehat {EBI} = \widehat {FBI}\) (chứng minh câu a),

BI là cạnh chung,

\(\widehat {EIB} = \widehat {FIB}\) (cùng bằng 60°),

Do đó ∆BEI = ∆BFI (g.c.g).

Vậy ∆BEI = ∆BFI.

c) Do ∆BEI = ∆BFI (câu b) nên BE = BF (hai cạnh tương ứng).

Ta có \(\widehat {BIC} + \widehat {CID} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {CID} = 180^\circ  - \widehat {BIC} = 180^\circ  - 120^\circ  = 60^\circ \)

Xét ∆CFI và ∆CDI có:

\(\widehat {FCI} = \widehat {DCI}\) (chứng minh câu a),

CI là cạnh chung,

\(\widehat {CIF} = \widehat {CID}\) (cùng bằng 60°),

Suy ra ∆CFI = ∆CDI (g.c.g).

Do đó CF = CD (hai cạnh tương ứng).

Ta có: BC = BF + FC = BE + CD.

Vậy BC = BE + CD.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, chúng ta đã dần quen với nhịp điệu học tập. Hãy tiếp tục nỗ lực và khám phá thêm những kiến thức mới mẻ!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK