Cho tam giác ABC cân tại A có M là trung điểm của BC. G là giao điểm của hai trung tuyến BD và CE.
a) Chứng minh: GA, GM, MA lần lượt là tia phân giác của các góc DGE, BGC, EMD.
b) Tìm điều kiện của tam giác ABC để EG là tia phân giác của góc DEM.
- Chứng minh:\(\widehat {AGE} = \widehat {AGD}\) nên GA là tia phân giác góc DGE.
Chứng minh: \(\widehat {BGM} = \widehat {CGM}\) nên GM là tia phân giác góc BGC.
Chứng minh: \(\widehat {AME} = \widehat {AMD}\) nên MA là tia phân giác góc EMD.
- Cho EG là tia phân giác của góc DEM chứng minh tam giác ABC đều (AB = AB = BC)
a)• Vì tam giác ABC cân tại A nên AB = AC, \(\widehat {ACB} = \widehat {ABC}\).
Vì E là trung điểm của AB nên AE = EB = \(\frac{1}{2}\)AB.
Vì D là trung điểm của AC nên AD = CD = \(\frac{1}{2}\) AC.
Mà AB = AC nên AE = EB = AD = CD.
Tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G nên G là trọng tâm của tam giác ABC.
Do đó đường trung tuyến AM của tam giác ABC cũng đi qua G.
Hay ba điểm A, G, M thẳng hàng.
Xét ∆ABM và ∆ACM có:
AB = AC (chứng minh trên),
AM là cạnh chung,
MB = MC (do M là trung điểm của BC).
Do đó ∆ABM = ∆ACM (c.c.c)
Suy ra \(\widehat {BAM} = \widehat {CAM}\) (hai góc tương ứng)
Xét ∆AEG và ∆ADG có:
AE = AD (chứng minh trên),
\(\widehat {EAG} = \widehat {DAG}\) (do \(\widehat {BAM} = \widehat {CAM}\)),
AG là cạnh chung
Do đó ∆AEG = ∆ADG (c.g.c).
Suy ra \(\widehat {AGE} = \widehat {AGD}\) (hai góc tương ứng).
Do vậy GA là tia phân giác của góc DGE.
• Ta có \(\widehat {BGM} = \widehat {AGD},\widehat {CGM} = \widehat {AGE}\) các cặp góc đối đỉnh)
Mà \(\widehat {AGE} = \widehat {AGD}\)
Nên \(\widehat {BGM} = \widehat {CGM}\)
Do đó GM là tia phân giác của góc BGC.
• Xét ∆AME và ∆AMD có:
AE = AD (chứng minh trên),
\(\widehat {E{\rm{A}}M} = \widehat {DAM}\) (do \(\widehat {BAM} = \widehat {CAM}\)),
AM là cạnh chung,
Do đó ∆AME = ∆AMD (c.g.c).
Suy ra \(\widehat {AME} = \widehat {AMD}\) (hai góc tương ứng)
Nên MA là tia phân giác của góc EMD.
Vậy GA, GM, MA lần lượt là tia phân giác của các góc DGE, BGC, EMD.
b) • Xét ∆ABC có \(\widehat {ABC} + \widehat {ACB} + \widehat {CAB} = 180^\circ \) (tổng ba góc của một tam giác)
Mà \(\widehat {ABC} = \widehat {ACB}\) nên \(\widehat {ABC} = \widehat {ACB} = \frac{{180^\circ - \widehat {BAC}}}{2}\)
Ta có AE = AD (chứng minh câu a)
Nên tam giác AED cân tại A
Suy ra \(\widehat {AE{\rm{D}}} = \widehat {ADE}\)
Xét ∆ADE có \(\widehat {ADE} + \widehat {AE{\rm{D}}} + \widehat {DA{\rm{E}}} = 180^\circ \) (tổng ba góc của một tam giác)
Mà \(\widehat {AE{\rm{D}}} = \widehat {ADE}\) nên \(\widehat {AED} = \widehat {ADE} = \frac{{180^\circ - \widehat {BAC}}}{2}\)
Từ (1) và (2) suy ra \(\widehat {AED} = \widehat {ABC}\)
Mà hai góc này ở vị trí đồng vị
Do đó ED // BC.
Nên \(\widehat {DEC} = \widehat {ECM}\) (hai góc so le trong)
• Để EG là tia phân giác của góc DEM thì \(\widehat {DEC} = \widehat {CEM}\)
Suy ra \(\widehat {ECM} = \widehat {CEM}\) nên tam giác MEC cân tại M.
Do đó ME = MC
Mặt khác, MB = MC nên ME = MB = MC.
Suy ra tam giác EMB cân tại M nên \(\widehat {MEB} = \widehat {MBE}\).
• Xét ∆EBC có \(\widehat {BEC} + \widehat {BCE} + \widehat {EBC} = 180^\circ \) (tổng ba góc của một tam giác)
Hay \(\widehat {BEC} + \widehat {MCE} + \widehat {MBE} = 180^\circ \)
Mà \(\widehat {MEC} = \widehat {MCE}\) và \(\widehat {MEB} = \widehat {MBE}\)
Nên \(\widehat {BEC} + \widehat {MEC} + \widehat {MEB} = 180^\circ \) hay \(\widehat {BEC} + \widehat {BEC} = 180^\circ \)
Suy ra \(2\widehat {BEC} = 180^\circ \)
Do đó \(\widehat {BEC} = \frac{{180^\circ }}{2} = 90^\circ \) nên \(\widehat {AEC} = 90^\circ .\)
• Xét ∆BEC và ∆AEC có:
\(\widehat {BEC} = \widehat {AEC}\) (cùng bằng 90°),
EC là cạnh chung,
BE = AE (chứng minh câu a)
Do đó ∆BEC = ∆AEC (hai cạnh góc vuông).
Suy ra BC = AC.
Mà AB = AC (chứng minh câu a).
Do đó AB = BC = AC nên tam giác ABC là tam giác đều.
Vậy điều kiện để EG là tia phân giác của góc DEM là tam giác ABC là tam giác đều.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, chúng ta đã dần quen với nhịp điệu học tập. Hãy tiếp tục nỗ lực và khám phá thêm những kiến thức mới mẻ!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK