Trang chủ Lớp 7 SBT Toán 7 - Cánh diều Bài tập cuối chương 7 Bài 105 trang 99 SBT Toán 7 Cánh diều: Cho tam giác ABC cân tại A có các đường cao BD và CE cắt nhau tại H....

Bài 105 trang 99 SBT Toán 7 Cánh diều: Cho tam giác ABC cân tại A có các đường cao BD và CE cắt nhau tại H....

Giải Bài 105 trang 99 sách bài tập toán 7 - Cánh diều - Bài tập cuối chương 7

Đề bài :

Cho tam giác ABC cân tại A có các đường cao BD và CE cắt nhau tại H.

a) Chứng minh ∆ADB = ∆AEC.

b) Chứng minh tam giác HDE là tam giác cân.

c) So sánh HB và HD.

d) Gọi M là trung điểm của HC, N là trung điểm của HB, I là giao điểm của BM và CN. Chứng minh ba điểm A, H, I thẳng hàng.

Phương pháp giải :

- Chứng minh: ∆ADB = ∆AEC (cạnh huyền – góc nhọn).

- Chứng minh: HE = HD nên tam giác HDE cân tại H.

-  Chứng minh: HC > HD và HB = HC nên HB > HD.

- Chứng minh: HP ⊥ BC hay HI ⊥ BC  và AH ⊥ BC suy ra ba điểm A, H, I cùng nằm trên một đường thẳng vuông góc với BC tại P

Lời giải chi tiết :

 image

a) Xét ∆ABD và ∆ACE có:

\(\widehat {ADB} = \widehat {AEC}\left( { = 90^\circ } \right)\)

AB = AC (do tam giác ABC cân tại A),

\(\hat A\) là góc chung,

Suy ra ∆ADB = ∆AEC (cạnh huyền – góc nhọn).

Vậy ∆ADB = ∆AEC.

b) Vì ∆ADB = ∆AEC (chứng minh câu a)

Suy ra AD = AE (hai cạnh tương ứng) và \(\widehat {ABD} = \widehat {ACE}\) (hai góc tương ứng).

Ta có AB = AE + EB, AC = AD + DC.

Mà AB = AC, AE = AD.

Suy ra BE = CD.

Xét ∆EHB và ∆DHC có:

\(\widehat {HEB} = \widehat {H{\rm{D}}C}\left( { = 90^\circ } \right)\)

BE = CD (chứng minh trên),

\(\widehat {EBH} = \widehat {DCH}\) (do \(\widehat {ABD} = \widehat {ACE}\))

Suy ra ∆EHB = ∆DHC (cạnh góc vuông – góc nhọn kề).

Do đó HE = HD, BH = CH (các cặp cạnh tương ứng).

Tam giác HDE có HE = HD nên tam giác HDE cân tại H.

Vậy tam giác HDE là tam giác cân tại H.

c) Trong tam giác vuông HDC có HC > HD (trong tam giác vuông, cạnh huyền là cạnh lớn nhất)

Mà HC = HB (chứng minh câu b)

Do đó HB > HD.

Vậy HB > HD.

d) • Gọi P là giao điểm của HI và BC.

Tam giác HBC có BM và CN là hai đường trung tuyến cắt nhau tại I.

Do đó I là trọng tâm của tam giác HBC nên HP là đường trung tuyến xuất phát từ đỉnh H của tam giác.

Từ đó ta có PB = PC.

Xét ∆HBP và ∆HCP có:

HB = HC (chứng minh ở câu b),

HP là cạnh chung,

PB = PC (chứng minh trên)

Do đó ∆HBP = ∆HCP (c.c.c)

Suy ra \(\widehat {HPB} = \widehat {HPC}\) (hai góc tương ứng)

Mà \(\widehat {HPB} + \widehat {HPC} = 180^\circ \) (hai góc kề bù)

Do đó \(\widehat {HPB} = \widehat {HPC} = \frac{{180^\circ }}{2} = 90^\circ \)

Từ đó ta có HP ⊥ BC hay HI ⊥ BC (1)

• Tam giác ABC có H là giao điểm của hai đường cao BD và CE nên H là trực tâm của tam giác ABC.

Do đó AH ⊥ BC (2)

Từ (1) và (2) suy ra ba điểm A, H, I cùng nằm trên một đường thẳng vuông góc với BC tại P

Hay ba điểm A, H, I thẳng hàng.

Vậy ba điểm A, H, I thẳng hàng.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, chúng ta đã dần quen với nhịp điệu học tập. Hãy tiếp tục nỗ lực và khám phá thêm những kiến thức mới mẻ!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK