Trang chủ Lớp 12 SGK Toán 12 - Chân trời sáng tạo Chương 4. Nguyên hàm. Tích phân Câu hỏi Vận dụng 1 trang 24 Toán 12 Chân trời sáng tạo: Mặt cắt của một cửa hầm có dạng là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như hình 7...

Câu hỏi Vận dụng 1 trang 24 Toán 12 Chân trời sáng tạo: Mặt cắt của một cửa hầm có dạng là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như hình 7...

Ta ghép mặt cắt của cửa hầm vào mặt phẳng \(Oxy\) như hình vẽ dưới đây. Hướng dẫn giải Câu hỏi Vận dụng 1 trang 24 SGK Toán 12 Chân trời sáng tạo - Bài 3. Ứng dụng hình học của tích phân.

Mặt cắt của một cửa hầm có dạng là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như hình 7. Tính diện tích của cửa hầm.

image

Hướng dẫn giải :

Ta ghép mặt cắt của cửa hầm vào mặt phẳng \(Oxy\) như hình vẽ dưới đây.

image

Diện tích của cửa hầm chính là diện tích phần mặt phẳng giới hạn bởi parabol \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = 0\) và \(x = 6\).

Để tính được diện tích của cửa hầm, ta xác định phương trình của parabol \(y = f\left( x \right)\) như trong hình, sau đó tính tích phân \(S = \int\limits_0^6 {\left| {f\left( x \right)} \right|dx} \).

Lời giải chi tiết :

Ta ghép mặt cắt của cửa hầm vào mặt phẳng \(Oxy\) như hình vẽ dưới đây. Diện tích của cửa hầm chính là diện tích hình phẳng giới hạn bởi parabol \(y = f\left( x \right) = a{x^2} + bx + c\), trục hoành và hai đường thẳng \(x = 0\), \(x = 6\).

image

Ta nhận thấy rằng parabol đi qua các điểm có toạ độ \(\left( {0;0} \right)\), \(\left( {6;0} \right)\) và \(\left( {3;6} \right)\) (trục đối xứng của parabol đi qua đỉnh), do đó ta có hệ phương trình:

\(\left\{ {\begin{array}{*{20}{c}}{a{{.0}^2} + b.0 + c = 0}\\{a{{.6}^2} + b.6 + c = 0}\\{a{{.3}^2} + b.3 + c = 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{c = 0}\\{36a + 6b + c = 0}\\{9a + 3b + c = 6}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = - \frac{2}{3}}\\{b = 4}\\{c = 0}\end{array}} \right.} \right.\)

Vậy phương trình của parabol là \(y = - \frac{2}{3}{x^2} + 4x\).

Ta thấy rằng với \(x \in \left[ {0;6} \right]\) thì parabol nằm trên trục hoành. Do đó, diện tích của cửa hầm, cũng chính là diện tích hình phẳng giới hạn bởi parabol \(y = - \frac{2}{3}{x^2} + 4x\), trục hoành và các đường thẳng \(x = 0\), \(x = 6\) là:

\(S = \int\limits_0^6 {\left| { - \frac{2}{3}{x^2} + 4x} \right|dx} = \int\limits_0^6 {\left( { - \frac{2}{3}{x^2} + 4x} \right)dx} = \left. {\left( {\frac{{ - 2}}{9}{x^3} + 2{x^2}} \right)} \right|_0^6 = 24\)

Vậy diện tích của cửa hầm là 24 \({{\rm{m}}^2}\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK