Trang chủ Lớp 12 SGK Toán 12 - Chân trời sáng tạo Chương 2. Vecto và hệ tọa độ trong không gian Giải mục 2 trang 59,60 Toán 12 tập 1 - Chân trời sáng tạo: Cho \(\overrightarrow q = (1; - 2;0)\). Vectơ \(\overrightarrow q \) có vuông góc với \(\overrightarrow p \)...

Giải mục 2 trang 59,60 Toán 12 tập 1 - Chân trời sáng tạo: Cho \(\overrightarrow q = (1; - 2;0)\). Vectơ \(\overrightarrow q \) có vuông góc với \(\overrightarrow p \)...

Lời giải bài tập, câu hỏi KP2, TH2, VD2 mục 2 trang 59,60 SGK Toán 12 tập 1 - Chân trời sáng tạo Bài 3. Biểu thức toạ độ của các phép toán vectơ. Biểu thức toạ độ của tích vô hướng... Cho \(\overrightarrow q = (1; - 2;0)\). Vectơ \(\overrightarrow q \) có vuông góc với \(\overrightarrow p \)

Câu hỏi:

Khám phá2

Trả lời câu hỏi Khám phá 2 trang 59

Cho hai vectơ \(\overrightarrow a = ({a_1};{a_2};{a_3})\), \(\overrightarrow b = ({b_1};{b_2};{b_3})\).

a) Biểu diễn từng vectơ \(\overrightarrow a \) và \(\overrightarrow b \) theo ba vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \)

b) Tính các tích vô hướng \({\overrightarrow i ^2},{\overrightarrow j ^2},{\overrightarrow k ^2}\), \(\overrightarrow i .\overrightarrow j \), \(\overrightarrow j .\overrightarrow k \), \(\overrightarrow k .\overrightarrow i \)

c) Tính tích vô hướng \(\overrightarrow a .\overrightarrow b \) theo toạ độ của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \).

Hướng dẫn giải :

Áp dụng công thức tính tích vô hướng của 2 vecto: \(\overrightarrow a .\overrightarrow b = |\overrightarrow a |.|\overrightarrow b |.\cos (\overrightarrow a ,\overrightarrow b )\)

Lời giải chi tiết :

a) \(\overrightarrow a = ({a_1};{a_2};{a_3}) = {a_1}(1;0;0) + {a_2}(0;0;1) + {a_3}(0;0;1) = {a_1}\overrightarrow i + {a_2}\overrightarrow j + {a_3}\overrightarrow k \)

\(\overrightarrow b = ({b_1};{b_2};{b_3}) = {b_1}(1;0;0) + {b_2}(0;0;1) + {b_3}(0;0;1) = {b_1}\overrightarrow i + {b_2}\overrightarrow j + {b_3}\overrightarrow k \)

b) \({\overrightarrow i ^2} = \overrightarrow i .\overrightarrow i = |\overrightarrow i |.|\overrightarrow i |.\cos (\overrightarrow i ,\overrightarrow i ) = 1.1.\cos 0^\circ = 1\)

\({\overrightarrow j ^2} = \overrightarrow j .\overrightarrow j = |\overrightarrow j |.|\overrightarrow j |.\cos (\overrightarrow j ,\overrightarrow j ) = 1.1.\cos 0^\circ = 1\)

\({\overrightarrow k ^2} = \overrightarrow k .\overrightarrow k = |\overrightarrow k |.|\overrightarrow k |.\cos (\overrightarrow k ,\overrightarrow k ) = 1.1.\cos 0^\circ = 1\)

\(\overrightarrow i .\overrightarrow j = |\overrightarrow i |.|\overrightarrow j |.\cos (\overrightarrow i ,\overrightarrow j ) = 1.1.\cos 90^\circ = 0\)

\(\overrightarrow j .\overrightarrow k = |\overrightarrow j |.|\overrightarrow k |.\cos (\overrightarrow j ,\overrightarrow k ) = 1.1.\cos 90^\circ = 0\)

\(\overrightarrow i .\overrightarrow k = |\overrightarrow i |.|\overrightarrow k |.\cos (\overrightarrow i ,\overrightarrow k ) = 1.1.\cos 90^\circ = 0\)

c) \(\overrightarrow a .\overrightarrow b = ({a_1}\overrightarrow i + {a_2}\overrightarrow j + {a_3}\overrightarrow k ) . ({b_1}\overrightarrow i + {b_2}\overrightarrow j + {b_3}\overrightarrow k )\)

\( = {a_1}{b_1}{\overrightarrow i ^2} + {a_1}{b_2}\overrightarrow i .\overrightarrow j + {a_1}{b_3}\overrightarrow i .\overrightarrow k + {a_2}{b_1}\overrightarrow i .\overrightarrow j + {a_2}{b_2}{\overrightarrow j ^2} + {a_2}{b_3}\overrightarrow j .\overrightarrow k + {a_3}{b_1}\overrightarrow i .\overrightarrow k + {a_3}{b_2}\overrightarrow j .\overrightarrow k + {a_3}{b_3}{\overrightarrow k ^2}\)

\( = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\)


Câu hỏi:

Thực hành2

Trả lời câu hỏi Thực hành 2 trang 60

Cho ba vectơ \(\overrightarrow m = ( - 5;4;9)\), \(\overrightarrow n = (2; - 7;0)\), \(\overrightarrow p = (6;3; - 4)\).

a) Tính \(\overrightarrow m .\overrightarrow n \), \(\overrightarrow m .\overrightarrow p \)

b) Tính \(|\overrightarrow m |\), \(|\overrightarrow n |\), \(\cos (\overrightarrow m ,\overrightarrow n )\)

c) Cho \(\overrightarrow q = (1; - 2;0)\). Vectơ \(\overrightarrow q \) có vuông góc với \(\overrightarrow p \) không?

Hướng dẫn giải :

a) Cho hai vectơ \(\overrightarrow a = ({a_1};{a_2};{a_3})\), \(\overrightarrow b = ({b_1};{b_2};{b_3})\), ta có biểu thức tọa độ của tích vô hướng \(\overrightarrow a .\overrightarrow b = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\)

b) Công thức tính độ lớn vecto: \(|\overrightarrow a | = \sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} \)

c) \(\overrightarrow a \bot \overrightarrow b \Rightarrow \overrightarrow a .\overrightarrow b = 0\)

Lời giải chi tiết :

a) \(\overrightarrow m .\overrightarrow n = - 5.2 + 4.( - 7) = - 38\)

\(\overrightarrow m .\overrightarrow p = ( - 5).6 + 4.3 + 9.( - 4) = - 54\)

b) \(|\overrightarrow m | = \sqrt {{{( - 5)}^2} + {4^2} + {9^2}} = \sqrt {122} \)

\(|\overrightarrow n | = \sqrt {{2^2} + {{( - 7)}^2}} = \sqrt {53} \)

\(\cos (\overrightarrow m ,\overrightarrow n ) = \frac{{\overrightarrow m .\overrightarrow n }}{{|\overrightarrow m |.|\overrightarrow n |}} = \frac{{ - 38}}{{\sqrt {122} .\sqrt {53} }} = - \frac{{19\sqrt {6466} }}{{3233}}\)

c) \(\overrightarrow q .\overrightarrow p = 1.6 - 2.2 = 2\) nên \(\overrightarrow q \) không vuông góc với \(\overrightarrow p \)


Câu hỏi:

Vận dụng2

Trả lời câu hỏi Vận dụng 2 trang 60

Một thiết bị thăm dò đáy biển (Hình 2) được đẩy bởi một lực \(\overrightarrow f = (5;4; - 2)\) (đơn vị: N) giúp thiết bị thực hiện độ dời \(\overrightarrow a = (70;20; - 40)\) (đơn vị: m). Tính công sinh bởi lực \(\overrightarrow f \)

image

Hướng dẫn giải :

Áp dụng công thức tính công \(A = \overrightarrow F .\overrightarrow d \)

Lời giải chi tiết :

Công sinh bởi lực \(\overrightarrow f \) là: \(A = \overrightarrow f .\overrightarrow a = 5.70 + 4.20 - 2.( - 40) = 510J\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK