Bạn Việt muốn dùng tấm bìa hình vuông cạnh 6dm làm một chiếc hộp không nắp, có đáy là hình vuông bằng cách cắt bỏ đi 4 hình vuông nhỏ ở bốn góc của tấm bìa (Hình 11).
Bạn Việt muốn tìm độ dài cạnh hình vuông cần cắt bỏ để chiếc hộp đạt thể tích lớn nhất.
a) Hãy thiết lập hàm số biểu thị thể tích hộp theo x với x là độ dài cạnh hình vuông cần cắt đi.
b) Khảo sát và vẽ đồ thị hàm số tìm được. Từ đó, hãy tư vấn cho bạn Việt cách giải quyết vấn đề và giải thích vì sao cần chọn giá trị này. (Làm tròn kết quả đến hàng phần mười.)
a) Công thức thể tích hình hộp: V = xyz
b) Bước 1. Tìm tập xác định của hàm số
Bước 2. Xét sự biến thiên của hàm số
− Tìm đạo hàm y’, xét dấu y’, xác định khoảng đơn điệu của hàm số.
− Tìm cực trị của hàm số
− Lập bảng biến thiên của hàm số.
Bước 3. Vẽ đồ thị của hàm số
− Xác định các giao điểm của đồ thị với các trục toạ độ
− Vẽ các đường tiệm cận của đồ thị hàm số (nếu có).
− Vẽ đồ thị hàm số.
Bạn Việt nên chọn giá trị x mà tại đó cho giá trị của V là lớn nhất theo bảng biến thiên
a) Chiều cao của hộp sau khi cắt là: x
Chiều dài của hộp sau khi cắt là: 6 – 2x
Chiều rộng của hộp sau khi cắt là: 6 – 2x
Thể tích của hộp là: \(V(x) = x{(6 - 2x)^2} = 4{x^3} - 24{x^2} + 36x\)
b) Tập xác định: \(D = (0;3)\)
\(V'(x) = 12{x^2} - 48x + 36 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\)
Trên các khoảng (0; 1), (3; \( + \infty \)) thì V'(x) > 0 nên hàm số đồng biến trên mỗi khoảng đó. Trên khoảng (1; 3) thì V'(x) < 0 nên hàm số nghịch biến trên khoảng đó.
Hàm số đạt cực đại tại x = 1 và \({y_{cd}} = 16\)
Hàm số đạt cực tiểu tại x = 3 và \({y_{ct}} = 0\)
Khi x = 0 thì V(x) = 0 nên (0; 0) là giao điểm của đồ thị với trục Oy
Ta có: \(V(x) = 0 \Leftrightarrow 4{x^3} - 24{x^2} + 36x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 3\end{array} \right.\)
Vậy đồ thị của hàm số giao với trục Ox tại điểm (0; 0) và (3; 0)
Vì 0 < x < 3 (vì ở mỗi cạnh đều cắt đi 2 đầu nên nếu x \( \ge \) 3 thì bạn Việt phải cắt hết tấm bìa. Do đó, bạn Việt nên cắt đi 4 hình vuông ở góc có cạnh bằng 1dm để thể tích của hộp đạt giá trị lớn nhất là 16\(d{m^3}\).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK