Trang chủ Lớp 11 SBT Toán 11 - Chân trời sáng tạo Chương 9. Xác suất Câu hỏi trắc nghiệm trang 100, 101 SBT Toán 11 - Chân trời sáng tạo tập 2: Một hộp đựng 10 viên bi đỏ được đánh số từ 1 đến 10 và 15 viên bi xanh được...

Câu hỏi trắc nghiệm trang 100, 101 SBT Toán 11 - Chân trời sáng tạo tập 2: Một hộp đựng 10 viên bi đỏ được đánh số từ 1 đến 10 và 15 viên bi xanh được...

Sử dụng kiến thức về quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố A và B. Khi đó, \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\). Giải Câu 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 - Bài hỏi trắc nghiệm trang 100, 101 sách bài tập toán 11 - Chân trời sáng tạo tập 2 - Bài tập cuối chương 9. Một lớp học gồm 50 bạn, trong đó có 20 bạn thích chơi bóng đá, 28 bạn thích chơi bóng rổ và 8 bạn thích chơi cả hai môn. Gặp ngẫu nhiên 1 học sinh trong lớp...

Câu hỏi:

Câu 1

Một lớp học gồm 50 bạn, trong đó có 20 bạn thích chơi bóng đá, 28 bạn thích chơi bóng rổ và 8 bạn thích chơi cả hai môn. Gặp ngẫu nhiên 1 học sinh trong lớp. Xác suất của biến cố “Bạn được gặp thích chơi bóng đá hoặc bóng rổ” là

A. 0,16

B. 0,96

C. 0,48

D. 0,8

Hướng dẫn giải :

Sử dụng kiến thức về quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố A và B. Khi đó, \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).

Lời giải chi tiết :

Gọi A là biến cố: “Bạn được gặp thích chơi bóng đá”

Gọi B là biến cố: “Bạn được gặp thích chơi bóng rổ”

Khi đó, \(A \cup B\) là biến cố “Bạn được gặp thích chơi bóng đá hoặc bóng rổ”.

Xác suất của biến cố A là: \(P\left( A \right) = \frac{{20}}{{50}}\)

Xác suất của biến cố B là: \(P\left( B \right) = \frac{{28}}{{50}}\)

Xác suất của biến cố AB là: \(P\left( {AB} \right) = \frac{8}{{50}}\)

Vậy xác suất của biến cố “Bạn được gặp thích chơi bóng đá hoặc bóng rổ” là:

\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{20}}{{50}} + \frac{{28}}{{50}} - \frac{8}{{50}} = 0,8\)

Chọn D


Câu hỏi:

Câu 2

Một lớp học gồm 50 bạn, trong đó có 20 bạn thích chơi bóng đá, 28 bạn thích chơi bóng rổ và 8 bạn thích chơi cả hai môn. Gặp ngẫu nhiên 1 học sinh trong lớp. Xác suất của biến cố “Bạn được gặp thích chơi bóng đá nhưng không thích chơi bóng rổ” là

A. 0,24

B. 0,12

C. 0,4

D. 0,16

Hướng dẫn giải :

Sử dụng kiến thức về tính xác suất của biến cố.

Lời giải chi tiết :

Số bạn được gặp thích chơi bóng đá nhưng không thích chơi bóng rổ là: \(20 - 8 = 12\) (bạn)

Xác suất của biến cố “Bạn được gặp thích chơi bóng đá nhưng không thích chơi bóng rổ” là: \(P = \frac{{12}}{{50}} = 0,24\)

Chọn A.


Câu hỏi:

Câu 3

Một hộp đựng 10 viên bi đỏ được đánh số từ 1 đến 10 và 15 viên bi xanh được đánh số từ 1 đến 15. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ trong hộp. Gọi A là biến cố “Viên bi lấy ra có màu đỏ”, B là biến cố “Viên bi lấy ra ghi số chẵn”. Xác suất của biến cố AB là

A. 0,28

B. 0,2

C. 0,4

D. 0,48

Hướng dẫn giải :

Sử dụng kiến thức về biến cố giao: Cho hai biến cố A và B. Biến cố “Cả A và B cùng xảy ra”, kí hiệu AB hoặc \(A \cap B\) được gọi là biến cố giao của A và B.

Lời giải chi tiết :

Không gian mẫu: “Lấy ra ngẫu nhiên 1 viên bi từ trong hộp”

Số phần tử của không gian mẫu là: \(10 + 15 = 25\)

Biến cố AB là: “Viên bi lấy ra có màu đỏ và ghi số chẵn”

Các kết quả thuận lợi của biến cố AB là: 5 (bi màu đỏ và mang số 2; 4; 6; 8; 10)

Do đó, xác suất của biến cố AB là: \(\frac{5}{{25}} = 0,2\)

Chọn B


Câu hỏi:

Câu 4

Một hộp đựng 10 viên bi đỏ được đánh số từ 1 đến 10 và 15 viên bi xanh được đánh số từ 1 đến 15. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ trong hộp. Gọi A là biến cố “Viên bi lấy ra có màu đỏ”, B là biến cố “Viên bi lấy ra ghi số chẵn”. Xác suất của biến cố \(A \cup B\) là:

A. 0,4

B. 0,88

C. 0,48

D. 0,68

Hướng dẫn giải :

Sử dụng kiến thức về quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố A và B. Khi đó, \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).

Lời giải chi tiết :

Không gian mẫu: “Lấy ra ngẫu nhiên 1 viên bi từ trong hộp”

Số phần tử của không gian mẫu là: \(10 + 15 = 25\)

Biến cố AB là: “Viên bi lấy ra có màu đỏ và ghi số chẵn”

Các kết quả thuận lợi của biến cố AB là: 5 (bi màu đỏ và mang số 2; 4; 6; 8; 10)

Do đó, xác suất của biến cố AB là: \(P\left( {AB} \right) = \frac{5}{{25}}\)

Xác suất của biến cố A là: \(P\left( A \right) = \frac{{10}}{{25}}\)

Xác suất của biến cố B là: \(P\left( B \right) = \frac{{5 + 7}}{{25}} = \frac{{12}}{{25}}\)

Vậy xác suất của biến cố \(A \cup B\) là:

\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{10}}{{25}} + \frac{{12}}{{25}} - \frac{5}{{25}} = 0,68\)

Chọn D


Câu hỏi:

Câu 5

Xác suất thực hiện thành công một thí nghiệm là 0,7. Thực hiện thí nghiệm đó 2 lần liên tiếp một cách độc lập với nhau. Xác suất của biến cố “Cả 2 lần thí nghiệm đều thành công” là

A. 0,7

B. 0,21

C. 0,49

D. 1,4

Hướng dẫn giải :

Sử dụng quy tắc nhân của hai biến cố độc lập: Nếu A và B là hai biến cố độc lập thì \(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\).

Lời giải chi tiết :

Xác suất của biến cố “Cả 2 lần thí nghiệm đều thành công” là: \(0,7.0,7 = 0,49\)

Chọn C


Câu hỏi:

Câu 6

Xác suất thực hiện thành công một thí nghiệm là 0,7. Thực hiện thí nghiệm đó 2 lần liên tiếp một cách độc lập với nhau. Xác suất của biến cố “Lần thứ nhất thí nghiệm thất bại, lần thứ hai thí nghiệm thành công” là:

A. 0,21

B. 0,09

C. 1

D. 0,42

Hướng dẫn giải :

Sử dụng quy tắc nhân của hai biến cố độc lập: Nếu A và B là hai biến cố độc lập thì \(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\).

Lời giải chi tiết :

Xác suất thực hiện thất bại một thí nghiệm là: \(1 - 0,7 = 0,3\)

Vậy xác suất của biến cố “Lần thứ nhất thí nghiệm thất bại, lần thứ hai thí nghiệm thành công” là: \(0,3.0,7 = 0,21\)

Chọn A


Câu hỏi:

Câu 7

Cho A và B là hai biến cố độc lập. Biết \(P\left( A \right) = 0,4\) và \(P\left( {AB} \right) = 0,2\). Xác suất của biến cố B là

A. 0,5

B. 0,6

C. 0,7

D. 0,8

Hướng dẫn giải :

Sử dụng quy tắc nhân của hai biến cố độc lập: Nếu A và B là hai biến cố độc lập thì \(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\).

Lời giải chi tiết :

Vì A và B là hai biến cố độc lập nên \(P\left( {AB} \right) = P\left( A \right).P\left( B \right) = 0,2 \Rightarrow P\left( B \right) = \frac{{0,2}}{{0,4}} = 0,5\)

Chọn A


Câu hỏi:

Câu 8

Cho A và B là hai biến cố độc lập. Biết \(P\left( A \right) = 0,4\) và \(P\left( {AB} \right) = 0,2\). Xác suất của biến cố \(A \cup B\) là

A. 0,6

B. 0,7

C. 0,8

D. 0,9

Hướng dẫn giải :

Sử dụng kiến thức về quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố A và B. Khi đó, \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).

Lời giải chi tiết :

Vì A và B là hai biến cố độc lập nên \(P\left( {AB} \right) = P\left( A \right).P\left( B \right) = 0,2 \Rightarrow P\left( B \right) = \frac{{0,2}}{{0,4}} = 0,5\)

Do đó, \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,4 + 0,5 - 0,2 = 0,7\)

Chọn B


Câu hỏi:

Câu 9

Một hộp chứa 5 viên bi xanh và một số viên bi trắng có cùng kích thước và khối lượng. Biết rằng nếu chọn ngẫu nhiên 1 viên bi từ hộp thì xác suất lấy được viên bi xanh là 0,25. Nếu lấy ra 1 viên bi từ hộp thì xác suất của biến cố “Lấy được 1 viên bi trắng” là

A. 0,25

B. 0,5

C. 0,75

D. 0,95

Hướng dẫn giải :

Sử dụng kiến thức về hai biến cố đối: Nếu A và B là hai biến cố đối thì \(P\left( A \right) + P\left( B \right) = 1\)

Lời giải chi tiết :

Vì biến cố “Lấy được 1 viên bi trắng” và “Lấy được 1 viên bi xanh” là hai biến cố đối nên xác suất của biến cố “Lấy được 1 viên bi trắng” là: \(1 - 0,25 = 0,75\).

Chọn C


Câu hỏi:

Câu 10

Một hộp chứa 5 viên bi xanh và một số viên bi trắng có cùng kích thước và khối lượng. Biết rằng nếu chọn ngẫu nhiên 1 viên bi từ hộp thì xác suất lấy được viên bi xanh là 0,25. Số viên bi trắng trong hộp là

A. 20

B. 15

C. 4

D. 1

Hướng dẫn giải :

Sử dụng kiến thức về tính xác suất của biến cố.

Lời giải chi tiết :

Gọi số viên bi trắng là n (viên, n là số tự nhiên). Số bi có trong hộp là: \(n + 5\) (viên)

Không gian mẫu: “Lấy ra ngẫu nhiên 1 viên bi từ hộp” nên số phần tử của không gian mẫu là \(n + 5\) (viên)

Số kết quả thuận lợi của biến cố “Lấy được 1 viên bi xanh” là: \(C_5^1 = 5\)

Vì xác suất lấy được viên bi xanh là 0,25 nên \(\frac{5}{{n + 5}} = 0,25 \Leftrightarrow n + 5 = 20 \Rightarrow n = 15\) (TM)

Vậy có 15 viên bi trắng trong hộp.

Chọn B

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK