Trang chủ Lớp 11 SBT Toán 11 - Chân trời sáng tạo Chương 8. Quan hệ vuông góc trong không gian Bài 2 trang 61 SBT Toán 11 - Chân trời sáng tạo tập 2: Cho hình chóp S. ABCD có đáy ABCD là hình vuông tâm O cạnh 2a...

Bài 2 trang 61 SBT Toán 11 - Chân trời sáng tạo tập 2: Cho hình chóp S. ABCD có đáy ABCD là hình vuông tâm O cạnh 2a...

Sử dụng kiến thức về góc giữa hai mặt phẳng để tính. Phân tích và giải - Bài 2 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2 - Bài 3. Hai mặt phẳng vuông góc. Cho hình chóp S. ABCD có đáy ABCD là hình vuông tâm O cạnh 2a. Cho biết \(SA = a\) và \(SA \bot \left( {ABCD} \right)\)...

Đề bài :

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh 2a. Cho biết \(SA = a\) và \(SA \bot \left( {ABCD} \right)\). Trên BC lấy điểm I sao cho tam giác SDI vuông tại S. Biết góc giữa hai mặt phẳng (SDI) và (ABCD) là \({60^0}\). Tính độ dài SI.

Hướng dẫn giải :

Sử dụng kiến thức về góc giữa hai mặt phẳng để tính: Góc giữa hai mặt phẳng cắt nhau bằng góc giữa hai đường thẳng lần lượt nằm trong hai mặt phẳng và vuông góc với giao tuyến của hai mặt phẳng.

Lời giải chi tiết :

image

Kẻ \(AK \bot ID\) tại K. Vì \(SA \bot \left( {ABCD} \right),AK \subset \left( {ABCD} \right) \Rightarrow SA \bot ID\), mà \(AK \bot ID\) nên \(ID \bot \left( {SAK} \right) \Rightarrow ID \bot SK\)

Ta có: \(AK \bot ID,ID \bot SK,AK \subset \left( {ABCD} \right),SK \subset \left( {SID} \right)\), ID là giao tuyến của hai mặt phẳng SID và ABCD. Do đó, \(\left( {\left( {SID} \right),\left( {ABCD} \right)} \right) = \left( {SK,AK} \right) = \widehat {SKA} = {60^0}\)

Vì \(SA \bot \left( {ABCD} \right),AD,AK \subset \left( {ABCD} \right) \Rightarrow SA \bot AD,SA \bot AK\)

Áp dụng định lý Pythagore vào tam giác SAD vuông tại A có:

\(SD = \sqrt {S{A^2} + A{D^2}} = \sqrt {{a^2} + {{\left( {2a} \right)}^2}} = a\sqrt 5 \)

Tam giác SAK vuông tại A nên: \(\sin \widehat {SKA} = \frac{{SA}}{{SK}} \Rightarrow SK = \frac{{SA}}{{\sin \widehat {SKA}}} = \frac{{2a\sqrt 3 }}{3}\)

Tam giác SID vuông tại S, đường cao SK có:

\(\frac{1}{{S{I^2}}} + \frac{1}{{S{D^2}}} = \frac{1}{{S{K^2}}} \) \( \Rightarrow \frac{1}{{S{I^2}}} = \frac{1}{{S{K^2}}} - \frac{1}{{S{D^2}}} = \left( {\frac{9}{{12{a^2}}}} \right) - \frac{1}{{{{\left( {a\sqrt 5 } \right)}^2}}} = \frac{{11}}{{20{a^2}}} \) \( \Rightarrow SI = \frac{{2a\sqrt {55} }}{{11}}\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK