Trang chủ Lớp 11 SBT Toán 11 - Chân trời sáng tạo Chương 6. Hàm số mũ và hàm số lôgarit Câu hỏi trắc nghiệm trang 24, 25 SBT Toán 11 - Chân trời sáng tạo tập 2: Cho x và y là số dương. Khẳng định nào sau đây đúng?...

Câu hỏi trắc nghiệm trang 24, 25 SBT Toán 11 - Chân trời sáng tạo tập 2: Cho x và y là số dương. Khẳng định nào sau đây đúng?...

Sử dụng kiến thức về phương trình mũ cơ bản để giải: \({a^x} = b\left( {a > 0. Trả lời Câu 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, Câu 13, Câu 14, Câu 15 - Bài hỏi trắc nghiệm trang 24, 25 sách bài tập toán 11 - Chân trời sáng tạo tập 2 - Bài tập cuối chương 6. Biết rằng ({2^a} = 9). Tính giá trị của biểu thức ({left( {frac{1}{8}} right)^{frac{a}{6}}})...Cho x và y là số dương. Khẳng định nào sau đây đúng?

Câu hỏi:

Câu 1

Biết rằng \({2^a} = 9\). Tính giá trị của biểu thức \({\left( {\frac{1}{8}} \right)^{\frac{a}{6}}}\).

A. \(\frac{1}{2}\)

B. \(\frac{1}{3}\)

C. \(\frac{1}{9}\)

D. 3

Hướng dẫn giải :

Sử dụng kiến thức về phương trình mũ cơ bản để giải: \({a^x} = b\left( {a > 0,a \ne 1} \right)\)

+ Nếu \(b \le 0\) thì phương trình vô nghiệm.

+ Nếu \(b > 0\) thì phương trình có nghiệm duy nhất \(x = {\log _a}b\).

Lời giải chi tiết :

Ta có: \({2^a} = 9 \Rightarrow a = {\log _2}9\).

Do đó, \({\left( {\frac{1}{8}} \right)^{\frac{a}{6}}} \) \( = {\left( {\frac{1}{{\sqrt 2 }}} \right)^a} \) \( = {\left( {\frac{1}{{\sqrt 2 }}} \right)^{{{\log }_2}9}} \) \( = {\left( {\sqrt 2 } \right)^{ - \frac{1}{2}{{\log }_{\sqrt 2 }}9}} \) \( = {\left( {\sqrt 2 } \right)^{ - {{\log }_{\sqrt 2 }}{9^{\frac{1}{2}}}}} \) \( = \frac{1}{{{{\left( {\sqrt 2 } \right)}^{{{\log }_{\sqrt 2 }}3}}}} \) \( = \frac{1}{3}\)

Chọn B


Câu hỏi:

Câu 2

Giá trị của biểu thức \(2{\log _5}10 + {\log _5}0,25\) bằng

A. 0

B. 1

C. 2

D. 4

Hướng dẫn giải :

Sử dụng kiến thức về phép tính lôgarit: Với \(a > 0,a \ne 1,M > 0,N > 0\) ta có:

\({\log _a}{M^\alpha } = \alpha {\log _a}M\left( {\alpha \in \mathbb{R}} \right)\), \({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\), \({\log _a}{a^b} = b\)

Lời giải chi tiết :

\(2{\log _5}10 + {\log _5}0,25 \) \( = {\log _5}{10^2} + {\log _5}0,25 \) \( = {\log _5}\left( {100.0,25} \right) \) \( = {\log _5}{5^2} \) \( = 2\)

Chọn C.


Câu hỏi:

Câu 3

Cho x và y là số dương. Khẳng định nào sau đây đúng?

A. \({2^{\log x + \log y}} = {2^{\log x}} + {2^{\log y}}\)

B. \({2^{\log \left( {x + y} \right)}} = {2^{\log x}}{.2^{\log y}}\)

C. \({2^{\log \left( {xy} \right)}} = {2^{\log x}}{.2^{\log y}}\)

D. \({2^{\log x.\log y}} = {2^{\log x}} + {2^{\log y}}\)

Hướng dẫn giải :

Sử dụng kiến thức về phép tính lôgarit: Với \(a > 0,a \ne 1,M > 0,N > 0\) ta có: \({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\)

Lời giải chi tiết :

\({2^{\log x}}{.2^{\log y}} = {2^{\log x + \log y}} = {2^{\log \left( {xy} \right)}}\)

Chọn C


Câu hỏi:

Câu 4

Biết rằng \(x = {\log _3}6 + {\log _9}4\). Giá trị của biểu thức \({3^x}\) bằng

A. 6

B. 12

C. 24

D. 48

Hướng dẫn giải :

Sử dụng kiến thức về phép tính lôgarit: Với \(a > 0,a \ne 1,M > 0,N > 0\) ta có:

\({\log _a}{M^\alpha } = \alpha {\log _a}M\left( {\alpha \in \mathbb{R}} \right)\), \({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\)

Lời giải chi tiết :

\(x \) \( = {\log _3}6 + {\log _9}4 \) \( = {\log _3}6 + \frac{1}{2}{\log _3}4 \) \( = {\log _3}6 + {\log _3}{4^{\frac{1}{2}}} \) \( = {\log _3}\left( {6.2} \right) \) \( = {\log _3}12\)

Do đó, \({3^x} \) \( = {3^{{{\log }_3}12}} \) \( = 12\)

Chọn B


Câu hỏi:

Câu 5

Giá trị của biểu thức \(\left( {{{\log }_2}25} \right)\left( {{{\log }_5}8} \right)\) bằng

A. 4

B. \(\frac{1}{4}\)

C. 6

D. \(\frac{1}{6}\)

Hướng dẫn giải :

Sử dụng kiến thức về phép tính lôgarit để tính: Cho các số dương a, b, N, \(a \ne 1,b \ne 1\) ta có: \({\log _a}N = \frac{{{{\log }_b}N}}{{{{\log }_b}a}}\).

Lời giải chi tiết :

\(\left( {{{\log }_2}25} \right)\left( {{{\log }_5}8} \right) \) \( = {\log _2}25.\frac{{{{\log }_2}8}}{{{{\log }_2}5}} \) \( = 2{\log _2}5.\frac{{3{{\log }_2}2}}{{{{\log }_2}5}} \) \( = 6\)

Chọn C


Câu hỏi:

Câu 6

Đặt \(\log 3 = a,\log 5 = b\). Khi đó, \({\log _{15}}50\) bằng

A. \(\frac{{1 + 2b}}{{a + b}}\)

B. \(\frac{{a - b}}{{a + b}}\)

C. \(\frac{{1 - b}}{{a + b}}\)

D. \(\frac{{1 + b}}{{a + b}}\)

Hướng dẫn giải :

Sử dụng kiến thức về phép tính lôgarit: Với \(a > 0,a \ne 1,M > 0,N > 0\) ta có:\({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\)

Lời giải chi tiết :

\({\log _{15}}50 \) \( = \frac{{\log 50}}{{\log 15}} \) \( = \frac{{\log \left( {5.10} \right)}}{{\log \left( {3.5} \right)}} \) \( = \frac{{\log 5 + \log 10}}{{\log 3 + \log 5}} \) \( = \frac{{b + 1}}{{a + b}}\)

Chọn D


Câu hỏi:

Câu 7

Cho ba số \(a = {4^{0,9}},b = {8^{0,5}},c = {\left( {\frac{1}{2}} \right)^{ - 1,6}}\). Khẳng định nào sau đây đúng?

A. \(c > a > b\)

B. \(c > b > a\)

C. \(a > b > c\)

D. \(a > c > b\)

Hướng dẫn giải :

Sử dụng kiến thức về sự biến thiên của hàm số mũ \(y = {a^x}\) để so sánh:

+ Nếu \(a > 1\) thì hàm số \(y = {a^x}\) đồng biến trên \(\mathbb{R}\).

+ Nếu \(0

Lời giải chi tiết :

Ta có: \(a \) \( = {\left( {{2^2}} \right)^{0,9}} \) \( = {2^{1,8}},b \) \( = {\left( {{2^3}} \right)^{0,5}} \) \( = {2^{1,5}},c \) \( = {\left( {\frac{1}{2}} \right)^{ - 1,6}} \) \( = {2^{1,6}}\)

Vì \(2 > 1\) nên hàm số \(y \) \( = {2^x}\) đồng biến trên \(\mathbb{R}\). Mà \(1,8 > 1,6 > 1,5\) nên \({2^{1,8}} > {2^{1,6}} > {2^{1,5}}\) nên \(a > c > b\).

Chọn D


Câu hỏi:

Câu 8

Cho ba số \(a = - {\log _{\frac{1}{3}}}\frac{1}{2},b = {\log _{\frac{1}{3}}}\frac{1}{2}\) và \(c = \frac{1}{2}{\log _3}5\). Khẳng định nào sau đây đúng?

A. \(a

B. \(b

C. \(c

D. \(a

Hướng dẫn giải :

Sử dụng kiến thức về sự biến thiên của hàm số \(y = {\log _a}x\) để so sánh:

+ Nếu \(a > 1\) thì hàm số \(y = {\log _a}x\) đồng biến trên \(\left( {0; + \infty } \right)\).

+ Nếu \(0

Lời giải chi tiết :

\(a \) \( = - {\log _{\frac{1}{3}}}\frac{1}{2} \) \( = {\log _3}\frac{1}{2},b \) \( = {\log _{\frac{1}{3}}}\frac{1}{2} \) \( = - {\log _3}{2^{ - 1}} \) \( = {\log _3}2,c \) \( = \frac{1}{2}{\log _3}5 \) \( = {\log _3}\sqrt 5 \)

Vì \(3 > 1\) nên hàm số \(y \) \( = {\log _3}x\) đồng biến trên \(\left( {0; + \infty } \right)\).

Mà \(\frac{1}{2}

Chọn A


Câu hỏi:

Câu 9

Cho \(0

A. \(x

B. \(y

C. \(z

D. \(z

Hướng dẫn giải :

- Sử dụng kiến thức về sự biến thiên của hàm số \(y = {\log _a}x\) để so sánh:

+ Nếu \(a > 1\) thì hàm số \(y = {\log _a}x\) đồng biến trên \(\left( {0; + \infty } \right)\).

+ Nếu \(0

- So sánh với 0.

Lời giải chi tiết :

\(x = {\log _a}\sqrt 2 + {\log _a}\sqrt 3 = {\log _a}\left( {\sqrt 2 .\sqrt 3 } \right) = {\log _a}\sqrt 6 \), \(y = \frac{1}{2}{\log _a}5 = {\log _a}\sqrt 5 \)

\(z = {\log _a}\sqrt {14} - {\log _a}\sqrt 2 = {\log _a}\frac{{\sqrt {14} }}{{\sqrt 2 }} = {\log _a}\sqrt 7 \)

Vì \(0

Mà \(\sqrt 5

Chọn C


Câu hỏi:

Câu 10

Cho ba số \(a = {\log _{\frac{1}{2}}}3,b = {\left( {\frac{1}{2}} \right)^{0,3}},c = {2^{\frac{1}{3}}}\). Khẳng định nào sau đây đúng?

A. \(a

B. \(a

C. \(c

D. \(b

Hướng dẫn giải :

- Sử dụng kiến thức về sự biến thiên của hàm số \(y = {\log _a}x\) để so sánh:

+ Nếu \(a > 1\) thì hàm số \(y = {\log _a}x\) đồng biến trên \(\left( {0; + \infty } \right)\).

+ Nếu \(0

- Sử dụng kiến thức về sự biến thiên của hàm số mũ \(y = {a^x}\) để so sánh:

+ Nếu \(a > 1\) thì hàm số \(y = {a^x}\) đồng biến trên \(\mathbb{R}\).

+ Nếu \(0

Lời giải chi tiết :

\(a = {\log _{\frac{1}{2}}}3 = - {\log _2}3,b = {\left( {\frac{1}{2}} \right)^{0,3}} = {2^{ - 0,3}},c = {2^{\frac{1}{3}}}\)

Vì \(2 > 1\) nên hàm số \(y = {2^x}\) đồng biến trên \(\mathbb{R}\). Mà \( - 0,3

Hàm số \(y = {a^x}\) luôn nằm phía trên trục hoành nên \({2^{\frac{1}{3}}} > 0,{2^{ - 0,3}} > 0\)

Lại có: \( - {\log _2}3

Do đó, \( - {\log _2}3

Chọn A


Câu hỏi:

Câu 11

Giải phương trình \({3^{4x}} = \frac{1}{{3\sqrt 3 }}\)

A. \( - \frac{1}{4}\)

B. \( - \frac{3}{8}\)

C. \(\frac{3}{8}\)

D. \(\frac{1}{{12\sqrt 3 }}\)

Hướng dẫn giải :

Sử dụng kiến thức về giải phương trình mũ cơ bản để giải phương trình:

\({a^x} = b\left( {a > 0,a \ne 1} \right)\)

+ Nếu \(b \le 0\) thì phương trình vô nghiệm.

+ Nếu \(b > 0\) thì phương trình có nghiệm duy nhất \(x = {\log _a}b\)

Chú ý: Với \(a > 0,a \ne 1\) thì \({a^x} = {a^\alpha } \Leftrightarrow x = \alpha \), tổng quát hơn: \({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) = v\left( x \right)\)

Lời giải chi tiết :

\({3^{4x}} = \frac{1}{{3\sqrt 3 }} \Leftrightarrow {\left( {\sqrt 3 } \right)^{2.4x}} = {\left( {\sqrt 3 } \right)^{ - 3}} \Leftrightarrow 8x = - 3 \Leftrightarrow x = \frac{{ - 3}}{8}\)

Vậy phương trình có nghiệm \(x = \frac{{ - 3}}{8}\)

Chọn B


Câu hỏi:

Câu 12

Tập nghiệm của bất phương trình \(0,{3^{3x - 1}} > 0,09\) là

A. \(\left( {1; + \infty } \right)\)

B. \(\left( { - \infty ;1} \right)\)

C. \(\left( { - \infty ; - \frac{1}{3}} \right)\)

D. \(\left( {0;1} \right)\)

Hướng dẫn giải :

Sử dụng kiến thức về giải bất phương trình chứa mũ để giải bất phương trình:

Bảng tổng kết về nghiệm của các bất phương trình:

Bất phương trình

\(b \le 0\)

\(b > 0\)

\(a > 1\)

\(0

\({a^x} > b\)

\(\forall x \in \mathbb{R}\)

\(x > {\log _a}b\)

\(x

\({a^x} \ge b\)

\(x \ge {\log _a}b\)

\(x \le {\log _a}b\)

\({a^x}

Vô nghiệm

\(x

\(x > {\log _a}b\)

\({a^x} \le b\)

\(x \le {\log _a}b\)

\(x \ge {\log _a}b\)

Chú ý:

+ Nếu \(a > 1\) thì \({a^{u\left( x \right)}} > {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) > v\left( x \right)\)

+ Nếu \(0 {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right)

Lời giải chi tiết :

\(0,{3^{3x - 1}} > 0,09 \Leftrightarrow 0,{3^{3x - 1}} > 0,{3^2} \Leftrightarrow 3x - 1

Vậy tập nghiệm của bất phương trình là: \(S = \left( { - \infty ;1} \right)\)

Chọn B


Câu hỏi:

Câu 13

Biết rằng \({\log _3}4.{\log _4}8.{\log _8}x = {\log _8}64\). Giá trị của x là

A. \(\frac{9}{2}\)

B. 9

C. 27

D. 81

Hướng dẫn giải :

Sử dụng kiến thức về giải phương trình lôgarit để giải phương trình:

\({\log _a}x = b\left( {a > 0,a \ne 1} \right)\)

Phương trình luôn có nghiệm duy nhất là \(x = {a^b}\).

Chú ý: Với \(a > 0,a \ne 1\) thì \({\log _a}u\left( x \right) = b \Leftrightarrow u\left( x \right) = {a^b}\), \({\log _a}u\left( x \right) = {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) = v\left( x \right)\end{array} \right.\) (có thể thay \(u\left( x \right) > 0\) bằng \(v\left( x \right) > 0\))

Lời giải chi tiết :

Điều kiện: \(x > 0\).

\({\log _3}4.{\log _4}8.{\log _8}x = {\log _8}64 \) \( \Leftrightarrow \frac{{{{\log }_8}4}}{{{{\log }_8}3}}.\frac{{{{\log }_8}8}}{{{{\log }_8}4}}.{\log _8}x = {\log _8}64 \) \( \Leftrightarrow \frac{1}{{{{\log }_8}3}}{\log _8}x = {\log _8}{8^2}\)

\( \) \( \Leftrightarrow {\log _8}x = 2.{\log _8}3 \) \( \Leftrightarrow {\log _8}x = {\log _8}9 \) \( \Leftrightarrow x = 9\) (thỏa mãn)

Vậy phương trình có nghiệm là \(x = 9\)

Chọn B


Câu hỏi:

Câu 14

Giải phương trình \({\log _5}\left( {4x + 5} \right) = 2 + {\log _5}\left( {x - 4} \right)\)

A. 9

B. 15

C. 4

D. 5

Hướng dẫn giải :

Sử dụng kiến thức về giải phương trình lôgarit để giải phương trình:

\({\log _a}x = b\left( {a > 0,a \ne 1} \right)\)

Phương trình luôn có nghiệm duy nhất là \(x = {a^b}\).

Chú ý: Với \(a > 0,a \ne 1\) thì \({\log _a}u\left( x \right) = b \Leftrightarrow u\left( x \right) = {a^b}\), \({\log _a}u\left( x \right) = {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) = v\left( x \right)\end{array} \right.\) (có thể thay \(u\left( x \right) > 0\) bằng \(v\left( x \right) > 0\))

Lời giải chi tiết :

Điều kiện: \(x > 4\)

\({\log _5}\left( {4x + 5} \right) = 2 + {\log _5}\left( {x - 4} \right) \) \( \Leftrightarrow {\log _5}\left( {4x + 5} \right) = {\log _5}{5^2} + {\log _5}\left( {x - 4} \right)\)

\( \) \( \Leftrightarrow {\log _5}\left( {4x + 5} \right) = {\log _5}25\left( {x - 4} \right) \Leftrightarrow 4x + 5 = 25x - 100 \Leftrightarrow 21x = 105 \Leftrightarrow x = 5\) ™

Vậy phương trình có nghiệm là \(x = 5\)

Chọn D


Câu hỏi:

Câu 15

Giả sử \(\alpha \) và \(\beta \) là hai nghiệm của phương trình \({\log _2}x.{\log _2}3x = - \frac{1}{3}\). Khi đó tích \(\alpha \beta \) bằng

A. \(\frac{1}{3}\)

B. 3

C. \(\sqrt 3 \)

D. \({\log _2}3\)

Hướng dẫn giải :

Sử dụng kiến thức về giải phương trình lôgarit để giải phương trình:

\({\log _a}x = b\left( {a > 0,a \ne 1} \right)\)

Phương trình luôn có nghiệm duy nhất là \(x = {a^b}\).

Chú ý: Với \(a > 0,a \ne 1\) thì \({\log _a}u\left( x \right) = b \Leftrightarrow u\left( x \right) = {a^b}\), \({\log _a}u\left( x \right) = {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) = v\left( x \right)\end{array} \right.\) (có thể thay \(u\left( x \right) > 0\) bằng \(v\left( x \right) > 0\))

Lời giải chi tiết :

Điều kiện: \(x > 0\)

\({\log _2}x.{\log _2}3x = - \frac{1}{3} \Leftrightarrow {\log _2}x\left( {{{\log }_2}x + {{\log }_2}3} \right) = - \frac{1}{3}\)

\( \Leftrightarrow 3{\left( {{{\log }_2}x} \right)^2} + 3{\log _2}x.{\log _2}3 + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}{\log _2}x = \frac{{ - 3{{\log }_2}3 + \sqrt {9{{\left( {{{\log }_2}3} \right)}^2} - 12} }}{6}\\{\log _2}x = \frac{{ - 3{{\log }_2}3 - \sqrt {9{{\left( {{{\log }_2}3} \right)}^2} - 12} }}{6}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = {2^{\frac{{ - 3{{\log }_2}3 + \sqrt {9{{\left( {{{\log }_2}3} \right)}^2} - 12} }}{6}\left( {tm} \right)}}\\x = {2^{\frac{{ - 3{{\log }_2}3 - \sqrt {9{{\left( {{{\log }_2}3} \right)}^2} - 12} }}{6}\left( {tm} \right)}}\end{array} \right.\)

Do đó, tích hai nghiệm là:

\(\alpha .\beta = {2^{\frac{{ - 3{{\log }_2}3 + \sqrt {9{{\left( {{{\log }_2}3} \right)}^2} - 12} }}{6}}}{.2^{\frac{{ - 3{{\log }_2}3 - \sqrt {9{{\left( {{{\log }_2}3} \right)}^2} - 12} }}{6}}} = {2^{\frac{{ - 6{{\log }_2}3}}{6}}} = {2^{{{\log }_2}\frac{1}{3}}} = \frac{1}{3}\)

Chọn A

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK