Một chân cột bằng gang có dạng hình chóp cụt tứ giác đều có cạnh đáy lớn bằng \(2a\), cạnh đáy nhỏ bằng \(a\), chiều cao \(h = 2a\) và bán kính đáy phần trụ rỗng bên trong bằng \(\frac{a}{2}\).
a) Tìm góc phẳng nhị diện tạo bởi mặt bên và mặt đáy.
b) Tính thể tích chân cột nói trên theo \(a\).
‒ Cách xác định góc phẳng nhị diện \(\left[ {A,d,B} \right]\): Dựng mặt phẳng \(\left( P \right)\) vuông góc với \(d\), gọi \(a,a’\) lần lượt là giao tuyến của \(\left( P \right)\) với hai nửa mặt phẳng chứa \(A,B\), khi đó \(\left[ {A,d,B} \right] = \left( {a,a’} \right)\).
‒ Sử dụng công thức tính thể tích khối chóp cụt đều: \(V = \frac{1}{3}h\left( {S + \sqrt {SS’} + S’} \right)\).
‒ Sử dụng công thức tính thể tích khối trụ: \(V = \pi {R^2}h\).
Mô hình hoá chân cột bằng gang bằng cụt chóp tứ giác đều \(ABCD.A’B’C’D’\) với \(O,O’\) là tâm của hai đáy. Vậy \(AB = 2{\rm{a}},A’B’ = a,OO’ = 2a\).
Gọi \(M,M’\) lần lượt là trung điểm của \(CD,C’D’\).
\(A’B’C'{\rm{D}}’\) là hình vuông \( \Rightarrow O’M’ \bot C'{\rm{D}}’\)
\(CDD’C’\) là hình thang cân \( \Rightarrow MM’ \bot C’D’\)
Vậy \(\widehat {MM’O’}\) là góc phẳng nhị diện giữa mặt bên và đáy nhỏ, \(\widehat {M’MO}\) là góc phẳng nhị diện giữa mặt bên và đáy lớn.
Kẻ \(M’H \bot OM\left( {H \in OM} \right)\)
\(OMM’O’\) là hình chữ nhật
\( \Rightarrow OH = O’M’ = \frac{a}{2},OM = a,MH = OM - OH = \frac{{\rm{a}}}{2}\)
\(\begin{array}{l}\tan \widehat {M’MO} = \frac{{M’H}}{{MH}} = 4\\ \Rightarrow \widehat {M’MO} = 75,{96^ \circ } \Rightarrow \widehat {MM’O’} = {180^ \circ } - \widehat {M’MO} = 104,{04^ \circ }\end{array}\)
b) Diện tích đáy lớn là: \(S = A{B^2} = 4{{\rm{a}}^2}\)
Diện tích đáy bé là: \(S’ = A’B{‘^2} = {a^2}\)
Thể tích hình chóp cụt là: \({V_1} = \frac{1}{3}h\left( {S + \sqrt {SS’} + S’} \right) = \frac{1}{3}.2a\left( {4{{\rm{a}}^2} + \sqrt {4{{\rm{a}}^2}.{a^2}} + {a^2}} \right) = \frac{{14{{\rm{a}}^3}}}{3}\)
Thể tích hình trụ rỗng là: \({V_2} = \pi {R^2}h = \pi .{\left( {\frac{a}{2}} \right)^2}.2{\rm{a}} = \frac{{\pi {a^3}}}{2}\)
Thể tích chân cột là: \(V = {V_1} - {V_2} = \left( {\frac{{14}}{3} - \frac{\pi }{2}} \right){a^3}\).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK