Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Chương VII. Đạo hàm Giải mục 1 trang 37, 38, 39 Toán 11 tập 2 - Chân trời sáng tạo: Quãng đường rơi tự do của một vật được biểu diễn bởi công thức \(s\left( t \right)...

Giải mục 1 trang 37, 38, 39 Toán 11 tập 2 - Chân trời sáng tạo: Quãng đường rơi tự do của một vật được biểu diễn bởi công thức \(s\left( t \right)...

Trả lời Hoạt động 1, Thực hành 1 , Vận dụng mục 1 trang 37, 38, 39 SGK Toán 11 tập 2 - Chân trời sáng tạo Bài 1. Đạo hàm. Quãng đường rơi tự do của một vật được biểu diễn bởi công thức...

Câu hỏi:

Hoạt động 1

Quãng đường rơi tự do của một vật được biểu diễn bởi công thức \(s\left( t \right) = 4,9{t^2}\) với \(t\) là thời gian tính bằng giây và \(s\) tính bằng mét.

Vận tốc trung bình của chuyển động này trên khoảng thời gian \(\left[ {5;t} \right]\) hoặc \(\left[ {t;5} \right]\) được tính bằng công thức \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\).

a) Hoàn thiện bảng sau về vận tốc trung bình trong những khoảng thời gian khác nhau. Nêu nhận xét về \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\) khi \(t\) càng gần 5.

image

b) Giới hạn \(\mathop {\lim }\limits_{t \to 5} \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\) được gọi là vận tốc tức thời của chuyển động tại thời điểm \({t_0} = 5\). Tính giá trị này.

c) Tính giới hạn \(\mathop {\lim }\limits_{t \to {t_0}} \frac{{s\left( t \right) - s\left( {{t_0}} \right)}}{{t - {t_0}}}\) để xác định vận tốc tức thời của chuyển động tại thời điểm \({t_0}\) nào đó trong quá trình rơi của vật.

Hướng dẫn giải :

a) Thay vào công thức \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\).

b) c) Sử dụng các quy tắc tính giới hạn.

Lời giải chi tiết :

a)

\(\begin{array}{l}\begin{array}{*{20}{l}}{\left[ {5;5,1} \right]}\end{array}:t = 5,1 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{1^2} - 4,{{9.5}^2}}}{{5,1 - 5}} = 49,49\\\begin{array}{*{20}{l}}{\left[ {5;5,05} \right]}\end{array}:t = 5,05 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{05}^2} - 4,{{9.5}^2}}}{{5,05 - 5}} = 49,245\\\begin{array}{*{20}{l}}{\left[ {5;5,01} \right]}\end{array}:t = 5,01 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{01}^2} - 4,{{9.5}^2}}}{{5,01 - 5}} = 49,049\\\begin{array}{*{20}{l}}{\left[ {5;5,001} \right]}\end{array}:t = 5,001 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{001}^2} - 4,{{9.5}^2}}}{{5,001 - 5}} = 49,0049\\\begin{array}{*{20}{l}}{\left[ {4,999;5} \right]}\end{array}:t = 4,999 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.4,{{999}^2} - 4,{{9.5}^2}}}{{4,999 - 5}} = 48,9951\\\begin{array}{*{20}{l}}{\left[ {4,99;5} \right]}\end{array}:t = 4,99 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.4,{{99}^2} - 4,{{9.5}^2}}}{{4,99 - 5}} = 48,951\end{array}\)

image

Ta thấy: \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\) càng gần 49 khi \(t\) càng gần 5.

b)

\(\begin{array}{l}\mathop {\lim }\limits_{t \to 5} \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9{t^2} - 4,{{9.5}^2}}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {{t^2} - {5^2}} \right)}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {t - 5} \right)\left( {t + 5} \right)}}{{t - 5}}\\ = \mathop {\lim }\limits_{t \to 5} 4,9\left( {t + 5} \right) = 4,9\left( {5 + 5} \right) = 49\end{array}\)

c)

\(\begin{array}{l}\mathop {\lim }\limits_{t \to {t_0}} \frac{{s\left( t \right) - s\left( {{t_0}} \right)}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9{t^2} - 4,9.t_0^2}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {{t^2} - t_0^2} \right)}}{{t - t_0^2}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {t - {t_0}} \right)\left( {t + {t_0}} \right)}}{{t - {t_0}}}\\ = \mathop {\lim }\limits_{t \to 5} 4,9\left( {t + {t_0}} \right) = 4,9\left( {{t_0} + {t_0}} \right) = 9,8{t_0}\end{array}\)


Câu hỏi:

Thực hành 1

Tính đạo hàm của hảm số \(f\left( x \right) = {x^3}\).

Hướng dẫn giải :

Tính giới hạn \(f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).

Lời giải chi tiết :

Với bất kì \({x_0} \in \mathbb{R}\), ta có:

\(\begin{array}{l}f\prime ({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} - {x_0}^3}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x.{x_0} + {x_0}^2} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x.{x_0} + {x_0}^2} \right) = {x^2} + {x_0}.{x_0} + {x_0}^2 = 3{x_0}^2\end{array}\)

Vậy \(f’\left( x \right) = {\left( {{x^3}} \right)^\prime } = 3{{\rm{x}}^2}\) trên \(\mathbb{R}\).


Câu hỏi:

Vận dụng

Với tình huống trong Hoạt động mở đầu, hãy tính vận tốc tức thời của chuyển động lúc \(t = 2\).

Hướng dẫn giải :

Tính \(v\left( 2 \right) = s’\left( 2 \right)\) với \(s\left( t \right) = 4,9{t^2}\).

Lời giải chi tiết :

Với bất kì \({t_0} \in \mathbb{R}\), ta có:

\(s’\left( {{t_0}} \right) = \mathop {\lim }\limits_{t \to {t_0}} \frac{{s\left( t \right) - s\left( {{t_0}} \right)}}{{t - {t_0}}} = 9,8{t_0}\)

Vậy \(s’\left( t \right) = 9,8t\) trên \(\mathbb{R}\).

Vậy vận tốc tức thời của chuyển động lúc \(t = 2\) là: \(v\left( 2 \right) = s’\left( 2 \right) = 9,8.2 = 19,6\left( {m/s} \right)\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK