Một người gửi tiết kiệm khoản tiền \(A\) triệu đồng (gọi là vốn) với lãi suất \(r\)/năm theo thể thức lãi kép (tiền lãi sau mỗi kì hạn được cộng gộp vào vốn). Tính tổng số tiền vốn và lãi sau một năm của người gửi nếu kì hạn là:
a) một năm;
b) một tháng.
Lưu ý: Nếu một năm được chia thành \(n\) kì hạn \(\left( {n = {\mathbb{N}^*}} \right)\) thì lãi suất mỗi kì hạn là \(\frac{r}{n}\).
a) Tính tổng tiền vốn và lãi sau một năm với lãi suất \(r\)/năm.
b) Tính lãi suất 1 tháng, sau đó tính tổng tiền vốn và lãi sau một tháng với lãi suất vừa tính được.
a) Số tiền lãi sau một năm là: \(A.r\)
Tổng số tiền vốn và lãi sau một năm của người gửi là: \(A + Ar = A\left( {1 + r} \right)\).
b) Số tiền lãi sau tháng thứ nhất là: \(A.\frac{r}{{12}}\)
Tổng số tiền vốn và lãi sau tháng thứ nhất là: \(A + A.\frac{r}{{12}} = A\left( {1 + \frac{r}{{12}}} \right)\).
Số tiền lãi sau tháng thứ hai là: \(A\left( {1 + \frac{r}{{12}}} \right).\frac{r}{{12}}\)
Tổng số tiền vốn và lãi sau tháng thứ hai là:
\(A\left( {1 + \frac{r}{{12}}} \right) + A\left( {1 + \frac{r}{{12}}} \right).\frac{r}{{12}} = A\left( {1 + \frac{r}{{12}}} \right).\left( {1 + \frac{r}{{12}}} \right) = A{\left( {1 + \frac{r}{{12}}} \right)^2}\).
Số tiền lãi sau tháng thứ ba là: \(A{\left( {1 + \frac{r}{{12}}} \right)^2}.\frac{r}{{12}}\)
Tổng số tiền vốn và lãi sau tháng thứ ba là:
\(A{\left( {1 + \frac{r}{{12}}} \right)^2} + A{\left( {1 + \frac{r}{{12}}} \right)^2}.\frac{r}{{12}} = A{\left( {1 + \frac{r}{{12}}} \right)^2}.\left( {1 + \frac{r}{{12}}} \right) = A{\left( {1 + \frac{r}{{12}}} \right)^3}\).
…
Vậy tổng số tiền vốn và lãi sau một năm là: \(A{\left( {1 + \frac{r}{{12}}} \right)^{12}}\).
Một người gửi tiết kiệm khoản tiền 5 triệu đồng vào ngân hàng với lãi suất 4%/năm và theo thể thức lãi kép liên tục. Tính tổng số tiền vốn và lãi mà người đó nhận được sau
a) 1 ngày;
b) 30 ngày.
(Luôn coi một năm có 365 ngày.)
Sử dụng công thức \(T = A.{e^{rt}}\).
a) Tổng số tiền vốn và lãi người đó nhận được sau 1 ngày là:
\(T = 5000000.{e^{0,04.\frac{1}{{365}}}} \approx 5000548\) (đồng).
b) Tổng số tiền vốn và lãi người đó nhận được sau 30 ngày là:
\(T = 5000000.{e^{0,04.\frac{{30}}{{365}}}} \approx 5016465\) (đồng).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK