Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Chương VI. Hàm số mũ và hàm số lôgarit Giải mục 1 trang 26, 27, 28 Toán 11 tập 2 - Chân trời sáng tạo: Ban đầu mẻ có bao nhiêu cá thể vi khuẩn?...

Giải mục 1 trang 26, 27, 28 Toán 11 tập 2 - Chân trời sáng tạo: Ban đầu mẻ có bao nhiêu cá thể vi khuẩn?...

Vận dụng kiến thức giải Hoạt động 1 , Hoạt động 2 , Thực hành 1 , Vận dụng 1 mục 1 trang 26, 27, 28 SGK Toán 11 tập 2 - Chân trời sáng tạo Bài 4. Phương trình - bất phương trình mũ và lôgarit. Số lượng cá thể vi khuẩn của một mẻ nuôi cấy tuân theo công thức (Pleft( t right) = {50... Ban đầu mẻ có bao nhiêu cá thể vi khuẩn?

Câu hỏi:

Hoạt động 1

Số lượng cá thể vi khuẩn của một mẻ nuôi cấy tuân theo công thức \(P\left( t \right) = {50.10^{kt}}\), trong đó \(t\) là thời gian tính bằng giờ kể từ thời điểm bắt đầu nuôi cấy, \(k\) là hằng số.

image

(Nguồn: Sinh học 10, NXB Giáo dục Việt Nam, năm 2017, trang 101)

a) Ban đầu mẻ có bao nhiêu cá thể vi khuẩn?

b) Sau 1 giờ thì mẻ có 100 cá thể vi khuẩn. Tìm giá trị của \(k\) (làm tròn kết quả đến hàng phần mười).

c) Sau bao lâu thì số lượng cá thể vi khuẩn đạt đến 50000?

Hướng dẫn giải :

a) Thay \(t = 0\) vào công thức \(P\left( t \right) = {50.10^{kt}}\).

b) Thay \(t = 1,P\left( t \right) = 100\) vào công thức \(P\left( t \right) = {50.10^{kt}}\).

c) Thay \(P\left( t \right) = 50000\) vào công thức \(P\left( t \right) = {50.10^{kt}}\).

Lời giải chi tiết :

a) Số cá thể vi khuẩn ban đầu mẻ có là:

\(P\left( 0 \right) = {50.10^{k.0}} = {50.10^0} = 50\) (cá thể)

b) Với \(t = 1,P\left( t \right) = 100\) ta có:

\(P\left( 1 \right) = {50.10^{k.1}} \Leftrightarrow 100 = {50.10^k} \Leftrightarrow {10^k} = 2 \Leftrightarrow k = \log 2 \approx 0,3\)

c) Thời gian để số lượng cá thể vi khuẩn đạt đến 50000 là:

\(50000 = {50.10^{0,3t}} \Leftrightarrow {10^{0,3t}} = 1000 \Leftrightarrow 0,3t = \log 1000 \Leftrightarrow 0,3t = 3 \Leftrightarrow t = 10\) (giờ)


Câu hỏi:

Hoạt động 2

Cho đồ thị của hai hàm số \(y = {a^x}\) và \(y = b\) như Hình 2a (với \(a > 0\)) hay Hình 2b (với \(0 < a < 1\)). Từ đây, hãy nhận xét về số nghiệm và công thức nghiệm của phương trình \({a^x} = b\) trong hai trường hợp \(b > 0\) và \(b \le 0\).

image

Hướng dẫn giải :

Quan sát đồ thị, dựa vào số điểm chung của đồ thị của hai hàm số \(y = {a^x}\) và \(y = b\).

Lời giải chi tiết :

Khi \(b > 0\), đồ thị của hai hàm số \(y = {a^x}\) và \(y = b\) cắt nhau tại một điểm duy nhất. Khi đó phương trình \({a^x} = b\) có nghiệm duy nhất \(x = {\log _a}b\).

Khi \(b \le 0\), đồ thị của hai hàm số \(y = {a^x}\) và \(y = b\) không có điểm chung. Khi đó phương trình \({a^x} = b\) vô nghiệm.


Câu hỏi:

Thực hành 1

Giải các phương trình sau:

a) \({3^{x + 2}} = \sqrt[3]{9}\); b) \({2.10^{2{\rm{x}}}} = 30\); c) \({4^{2{\rm{x}}}} = {8^{2{\rm{x}} - 1}}\).

Hướng dẫn giải :

a) b) Đưa về phương trình \({a^x} = b\).

c) Đưa 2 vế của phương trình về cùng cơ số.

Lời giải chi tiết :

a) \({3^{x + 2}} = \sqrt[3]{9} \Leftrightarrow {3^{x + 2}} = {9^{\frac{1}{3}}} \Leftrightarrow {3^{x + 2}} = {\left( {{3^2}} \right)^{\frac{1}{3}}} \Leftrightarrow {3^{x + 2}} = {3^{\frac{2}{3}}} \Leftrightarrow x + 2 = \frac{2}{3} \Leftrightarrow x = - \frac{4}{3}\)

b) \({2.10^{2{\rm{x}}}} = 30 \Leftrightarrow {10^{2{\rm{x}}}} = 15 \Leftrightarrow 2{\rm{x}} = \log 15 \Leftrightarrow x = \frac{1}{2}\log 15\)

c) \({4^{2{\rm{x}}}} = {8^{2{\rm{x}} - 1}} \Leftrightarrow {\left( {{2^2}} \right)^{2{\rm{x}}}} = {\left( {{2^3}} \right)^{2{\rm{x}} - 1}} \Leftrightarrow {2^{4{\rm{x}}}} = {2^{6{\rm{x}} - 3}} \Leftrightarrow 4{\rm{x}} = 6{\rm{x}} - 3 \Leftrightarrow - 2{\rm{x}} = - 3 \Leftrightarrow x = \frac{3}{2}\).


Câu hỏi:

Vận dụng 1

Công thức tính khối lượng còn lại của một chất phóng xạ từ khối lượng ban đầu \({M_0}\) là \(M\left( t \right) = {M_0}{\left( {\frac{1}{2}} \right)^{\frac{t}{T}}}\), trong đó \(t\) là thời gian tính từ thời điểm ban đầu và \(T\) là chu kì bán rã của chất. Đồng vị plutonium-234 có chu kì bản rã là 9 giờ.

(Nguồn: https://pubchem.ncbi.nlm.nih.gov/element/Plutonium#section=Atomic- Mass-Half-Life-and-Decay)

Từ khối lượng ban đầu 200 g, sau bao lâu thì sau bao lâu thì khối lượng plutonium-234 còn lại là:

a) 100 g?

b) 50 g?

c) 20 g?

Hướng dẫn giải :

Thay \({M_0} = 200,T = 9\) và giá trị của \(M\left( t \right)\) vào công thức \(M\left( t \right) = {M_0}{\left( {\frac{1}{2}} \right)^{\frac{t}{T}}}\).

Lời giải chi tiết :

a) Với \({M_0} = 200,T = 9,M\left( t \right) = 100\) ta có:

\(100 = 200{\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} = \frac{1}{2} \Leftrightarrow \frac{t}{9} = 1 \Leftrightarrow t = 9\)

Vậy sau 9 giờ thì khối lượng plutonium-234 ban đầu 200 g còn lại là 100 g.

b) Với \({M_0} = 200,T = 9,M\left( t \right) = 50\) ta có:

\(50 = 200{\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} = \frac{1}{4} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} = {\left( {\frac{1}{2}} \right)^2} \Leftrightarrow \frac{t}{9} = 2 \Leftrightarrow t = 18\)

Vậy sau 18 giờ thì khối lượng plutonium-234 ban đầu 200 g còn lại là 50 g.

c) Với \({M_0} = 200,T = 9,M\left( t \right) = 20\) ta có:

\(20 = 200{\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} = \frac{1}{{10}} \Leftrightarrow \frac{t}{9} = {\log _{\frac{1}{2}}}\frac{1}{{10}} \Leftrightarrow \frac{t}{9} = {\log _2}10 \Leftrightarrow t = 9{\log _2}10 \approx 29,9\)

Vậy sau 29,9 giờ thì khối lượng plutonium-234 ban đầu 200 g còn lại là 50 g.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK