Công thức \(h = - 19,4.\log \frac{P}{{{P_0}}}\) là mô hình đơn giản cho phép tính độ cao \(h\) so với mặt nước biển của một vị trí trong không trung (tính bằng kilômét) theo áp suất không khí \(P\) tại điểm đó và áp suất \({P_0}\) của không khí tại mặt nước biển (cùng tính bằng \(Pa\) – đơn vị áp suất, đọc là Pascal).
(Nguồn: https://doi.org/10.1007/s40828-020-0111-6)
a) Nếu áp suất không khí ngoài máy bay bằng \(\frac{1}{2}{P_0}\) thì máy bay đang ở độ cao nào?
b) Áp suất không khí tại đỉnh của ngọn núi A bằng \(\frac{4}{5}\) lần áp suất không khí tại đỉnh của ngọn núi B. Ngọn núi nào cao hơn và cao hơn bao nhiêu kilômét? (Làm tròn kết quả đến hảng phần mười.)
Sử dụng công thức \(h = - 19,4.\log \frac{P}{{{P_0}}}\).
a) Độ cao của máy bay khi áp suất không khí ngoài máy bay bằng \(\frac{1}{2}{P_0}\) là:
\(h = - 19,4.\log \frac{{\frac{1}{2}{P_0}}}{{{P_0}}} = - 19,4.\log \frac{1}{2} \approx 5,84\left( {km} \right)\)
b) Độ cao của ngọn núi A là: \({h_A} = - 19,4.\log \frac{{{P_A}}}{{{P_0}}}\)
Độ cao của ngọn núi B là: \({h_B} = - 19,4.\log \frac{{{P_B}}}{{{P_0}}}\)
Áp suất không khí tại đỉnh của ngọn núi A bằng \(\frac{4}{5}\) lần áp suất không khí tại đỉnh của ngọn núi B nên ta có: \({P_A} = \frac{4}{5}{P_B} \Leftrightarrow \frac{{{P_A}}}{{{P_B}}} = \frac{4}{5}\)
Ta có:
\(\begin{array}{l}{h_A} - {h_B} = \left( { - 19,4.\log \frac{{{P_A}}}{{{P_0}}}} \right) - \left( { - 19,4.\log \frac{{{P_B}}}{{{P_0}}}} \right) = - 19,4.\log \frac{{{P_A}}}{{{P_0}}} + 19,4.\log \frac{{{P_B}}}{{{P_0}}}\\ = - 19,4\log \left( {\frac{{{P_A}}}{{{P_0}}}:\frac{{{P_B}}}{{{P_0}}}} \right) = - 19,4\log \frac{{{P_A}}}{{{P_B}}} = - 19,4\log \frac{4}{5} \approx 1,88\left( {km} \right)\end{array}\)
Vậy ngọn núi A cao hơn ngọn núi B 1,88 km.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK