Cho cấp số nhân \(\left( {{u_n}} \right)\) có công bội \(q\). Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\).
a) So sánh \(q.{S_n}\) và \(\left( {{u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n}\).
b) So sánh \({u_1} + q.{S_n}\) và \({S_n} + {u_1}.{q^n}\).
Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).
a) Ta có:
\(q.{S_n} = q.\left( {{u_1} + {u_2} + ... + {u_n}} \right) = {u_1}.q + {u_2}.q + ... + {u_n}.q = \left( {{u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n}\)
b) Ta có:
\({u_1} + q.{S_n} = {u_1} + \left( {{u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n} = \left( {{u_1} + {u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n} = {S_n} + {u_1}.{q^n}\)
Tính tổng \(n\) số hạng đầu tiên của cấp số nhân \(\left( {{u_n}} \right)\) trong các trường hợp sau:
a) \({u_1} = {10^5};q = 0,1;n = 5\);
b) \({u_1} = 10;{u_2} = - 20;n = 5\).
Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) là: \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\).
a) \({S_5} = \frac{{{u_1}\left( {1 - {q^5}} \right)}}{{1 - q}} = \frac{{{{10}^5}\left( {1 - {{\left( {0,1} \right)}^5}} \right)}}{{1 - 0,1}} = 111110\).
b) Ta có: \({u_2} = {u_1}.q \Leftrightarrow - 20 = 10.q \Leftrightarrow q = - 2\)
\({S_5} = \frac{{{u_1}\left( {1 - {q^5}} \right)}}{{1 - q}} = \frac{{10\left( {1 - {{\left( { - 2} \right)}^5}} \right)}}{{1 - \left( { - 2} \right)}} = 110\).
Trong bài toán ở Hoạt động mở đầu đầu bài học, tính tổng các độ cao của quả bóng sau 10 lần rơi đầu tiên.
Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) là: \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\).
Theo đề bài ta có dãy số chỉ độ cao của quả bóng là một cấp số nhân có số hạng đầu \({u_1} = 120\) và công bội \(q = \frac{1}{2}\).
Tổng các độ cao của quả bóng sau 10 lần rơi đầu tiên là:
\({S_{10}} = \frac{{{u_1}\left( {1 - {q^{10}}} \right)}}{{1 - q}} = \frac{{120\left( {1 - {{\left( {\frac{1}{2}} \right)}^{10}}} \right)}}{{1 - \left( {\frac{1}{2}} \right)}} = 239,765625\left( {cm} \right)\).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK