Trang chủ Lớp 11 SGK Toán 11 - Chân trời sáng tạo Chương 2 Dãy số. Cấp số cộng. Cấp số nhân Giải mục 1 trang 57, 58 Toán 11 tập 1 - Chân trời sáng tạo: Tính thương của hai số hạng liên tiếp trong dãy số: \(2;4;8;16;32;64\)...

Giải mục 1 trang 57, 58 Toán 11 tập 1 - Chân trời sáng tạo: Tính thương của hai số hạng liên tiếp trong dãy số: \(2;4;8;16;32;64\)...

Hướng dẫn giải Hoạt động 1, Thực hành 1, Vận dụng 1, Vận dụng 2 mục 1 trang 57, 58 SGK Toán 11 tập 1 - Chân trời sáng tạo Bài 3. Cấp số nhân. Tính thương của hai số hạng liên tiếp trong dãy số: \(2;4;8;16;32;64\)...

Câu hỏi:

Hoạt động 1

a) Tính thương của hai số hạng liên tiếp trong dãy số: \(2;4;8;16;32;64\).

b) Tìm điểm giống nhau của các dãy số sau:

i) \(3;6;12;24;48\).

ii) \(1;\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{{16}}\).

iii) \(2; - 6;18; - 54;162; - 486\).

Hướng dẫn giải :

Xem hai số hạng liên tiếp của dãy có liên hệ gì.

Lời giải chi tiết :

a) Ta có: \(\frac{4}{2} = 2;\frac{8}{4} = 2;\frac{{16}}{8} = 2;\frac{{32}}{{16}} = 2;\frac{{64}}{{32}} = 2\).

b) Ta thấy:

i) Số sau bằng số liền trước nhân với 2.

ii) Số sau bằng số liền trước nhân với \(\frac{1}{2}\).

ii) Số sau bằng số liền trước nhân với \( - 3\).

Điểm giống nhau của các dãy số này là số sau bằng số liền trước nhân với một số không đổi.


Câu hỏi:

Thực hành 1

Cho ba số tự nhiên \(m,n,p\) theo thứ tự lập thành cấp số cộng. Chứng minh ba số \({2^m},{2^n},{2^p}\) theo thứ tự lập thành cấp số nhân.

Hướng dẫn giải :

Chứng minh \({\left( {{2^n}} \right)^2} = {2^m}{.2^p}\).

Lời giải chi tiết :

Ba số tự nhiên \(m,n,p\) theo thứ tự lập thành cấp số cộng nên ta có: \(2n = m + p\).

Ta có: \(2n = m + p \Leftrightarrow {2^{2n}} = {2^{m + p}} \Leftrightarrow {\left( {{2^n}} \right)^2} = {2^m}{.2^p}\).

Vậy ba số \({2^m},{2^n},{2^p}\) theo thứ tự lập thành cấp số nhân.


Câu hỏi:

Vận dụng 1

Một quốc gia có dân số năm 2011 là \(P\) triệu người. Trong 10 năm tiếp theo, mỗi năm dân số tăng \(a\% \). Chứng minh rằng dân số các năm từ năm 2011 đến năm 2021 của quốc gia đó tạo thành cấp số nhân. Tìm công bội của cấp số nhân này.

Hướng dẫn giải :

Biến đổi, đưa \({u_{n + 1}} = {u_n}.q\), khi đó dãy số là cấp số nhân có công bội \(q\).

Lời giải chi tiết :

Giả sử dân số của quốc gia đó từ năm 2011 đến năm 2021 là dãy số \(\left( {{u_n}} \right)\) với \({u_1} = P\).

Ta có:

\(\begin{array}{l}{u_1} = P\\{u_2} = {u_1} + {u_1}.\frac{a}{{100}} = {u_1}.\left( {1 + \frac{a}{{100}}} \right)\\{u_3} = {u_2} + {u_2}.\frac{a}{{100}} = {u_2}\left( {1 + \frac{a}{{100}}} \right)\\{u_4} = {u_3} + {u_3}.\frac{a}{{100}} = {u_3}\left( {1 + \frac{a}{{100}}} \right)\\ \vdots \\{u_{11}} = {u_{10}} + {u_{10}}.\frac{a}{{100}} = {u_{10}}\left( {1 + \frac{a}{{100}}} \right)\end{array}\)

Vậy dân số các năm từ năm 2011 đến năm 2021 của quốc gia đó tạo thành cấp số nhân với công bội \(q = 1 + \frac{a}{{100}}\).


Câu hỏi:

Vận dụng 2

Tần số của ba phím liên tiếp Sol, La, Si trên một cây đàn organ tạo thành cấp số nhân. Biết tần số của hai phim Sol và Si lần lượt là 415 Hz và 466 Hz (theo: https://vi.wikipedia.org/wiki/Đô_(nốt nhạc)). Tính tần số của phím La (làm tròn đến hàng đơn vị).

Hướng dẫn giải :

Sử dụng tính chất của cấp số nhân: Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân thì \(u_n^2 = {u_{n - 1}}.{u_{n + 1}}\) với \(n \ge 2\).

Lời giải chi tiết :

Giả sử tần số của ba phím liên tiếp Sol, La, Si trên một cây đàn organ lần lượt là \({u_1};{u_2};{u_3}\) (Hz) \(\left( {{u_1};{u_2};{u_3} > 0} \right)\).

Theo đề bài ta có: \({u_1} = 415;{u_3} = 466\)

Tần số của ba phím liên tiếp Sol, La, Si trên một cây đàn organ tạo thành cấp số nhân nên ta có: \(u_2^2 = {u_1}.{u_3} = 415.466 = 193390 \Leftrightarrow {u_2} = \sqrt {193390} \approx 440\) (Hz).

Vậy tần số của phím La là 440 Hz.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK