Trang chủ Lớp 10 Toán lớp 10 - Chân trời sáng tạo Bài tập cuối chương 5 Bài 4 trang 102 Toán 10 tập 1 – Chân trời sáng tạo: Cho hình bình hành ABCD hai điểm M và N lần lượt là trung...

Bài 4 trang 102 Toán 10 tập 1 – Chân trời sáng tạo: Cho hình bình hành ABCD hai điểm M và N lần lượt là trung...

Giải bài 4 trang 102 SGK Toán 10 tập 1 – Chân trời sáng tạo - Bài tập cuối chương V

Đề bài :

Cho hình bình hành ABCD hai điểm MN lần lượt là trung điểm của BC AD. Vẽ điểm E sao cho \(\overrightarrow {CE}  = \overrightarrow {AN} \) (hình 1)

a) Tìm tổng của các vectơ:

\(\overrightarrow {NC} \) và \(\overrightarrow {MC} \); \(\overrightarrow {AM} \) và \(\overrightarrow {CD} \); \(\overrightarrow {AD} \) và \(\overrightarrow {NC} \)

b) Tìm các vectơ hiệu:

\(\)\(\overrightarrow {NC}  - \overrightarrow {MC} \); \(\overrightarrow {AC}  - \overrightarrow {BC} \); \(\overrightarrow {AB}  - \overrightarrow {ME} \).

 c) Chứng minh \(\overrightarrow {AM}  + \overrightarrow {AN}  = \overrightarrow {AB}  + \overrightarrow {AD} \)

image

Phương pháp giải :

a) Chỉ ra các hình bình hành, từ đó suy ra các vectơ bằng nhau và vận dụng quy tắc hình bình hành.

b) Quy tắc hiệu: \(\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {CB} \), quy tắc ba điểm \(\overrightarrow {AB}  = \overrightarrow {AO}  + \overrightarrow {OB} \) và thay thế các vectơ bằng nhau \(\overrightarrow {ME}  = \overrightarrow {AD} \)

c) Thay thế các vectơ bằng nhau \(\overrightarrow {AN}  = \overrightarrow {MC} \); sử dụng quy tắc hình bình hành \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \) (với ABCD là hình bình hành)

Lời giải chi tiết :

a) Ta có: \(\overrightarrow {CE}  = \overrightarrow {AN}  \Rightarrow CE//AN\) và \(CE = AN = ND = BM = MC\)

Suy ra \(\overrightarrow {MC}  = \overrightarrow {CE} \)

+) \(\overrightarrow {NC}  + \overrightarrow {MC}  = \overrightarrow {NC}  + \overrightarrow {CE}  = \overrightarrow {NE} \)

+) ABCD là hình bình hành nên \(\overrightarrow {CD}  = \overrightarrow {BA} \)

\(\overrightarrow {AM}  + \overrightarrow {CD}  = \overrightarrow {AM}  + \overrightarrow {BA}  = \overrightarrow {BM} \)

+) Ta có \(\overrightarrow {MC}  = \overrightarrow {AN}  \Rightarrow AMCN\) là hình bình hành nên \(\overrightarrow {NC}  = \overrightarrow {AM} \)

\(\overrightarrow {AD}  + \overrightarrow {NC}  = \overrightarrow {AD}  + \overrightarrow {AM}  = \overrightarrow {AE} \) (vì AMED là hình bình hành)

b) Ta có:

+) \(\overrightarrow {NC}  - \overrightarrow {MC}  = \overrightarrow {NC}  + \overrightarrow {CM}  = \overrightarrow {NM} \)

+) \(\overrightarrow {AC}  - \overrightarrow {BC}  = \overrightarrow {AC}  + \overrightarrow {CB}  = \overrightarrow {AB} \)

+) \(\overrightarrow {AB}  - \overrightarrow {ME}  = \overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {DA}  = \overrightarrow {DB} \)

c) Ta có:

\(\overrightarrow {AM}  + \overrightarrow {AN}  = \overrightarrow {AM}  + \overrightarrow {MC}  = \overrightarrow {AC} \)

Áp dụng quy tắc hình bình hành vào hình bình hành ABCD ta có

\(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Từ đó suy ra \(\overrightarrow {AM}  + \overrightarrow {AN}  = \overrightarrow {AB}  + \overrightarrow {AD} \) (đpcm)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK