HĐ Khám phá 1
Hãy nhắc lại công thức tính khoảng cách giữa 2 điểm \(I\left( {a;b} \right)\) và \(M\left( {x;y} \right)\)trong mặt phẳng Oxy
Khoảng cách hai điểm M,I (hay độ dài đoạn thẳng MI)chính là độ dài vecto \(\overrightarrow {MI} \)
\(\overrightarrow {MI} = \left( {a - x;b - y} \right) \Rightarrow \left| {\overrightarrow {MI} } \right| = \sqrt {{{\left( {a - x} \right)}^2} + {{\left( {;b - y} \right)}^2}} \)
Vậy khoảng cách giữa hai điểm \(I\left( {a;b} \right)\) và \(M\left( {x;y} \right)\) là \(\sqrt {{{\left( {a - x} \right)}^2} + {{\left( {;b - y} \right)}^2}} \)
Thực hành 1
Viết phương trình đường tròn (C) trong các trường hợp sau:
a) (C) có tâm \(O\left( {0;0} \right)\), bán kính \(R = 4\)
b) (C) có tâm \(I\left( {2; - 2} \right)\), bán kính \(R = 8\)
c) (C) đi qua 3 điểm \(A(1;4),B(0;1),C(4;3)\)
Phương trình đường tròn tâm \(I(a;b)\) và bán kính R là \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\)
c) Lập phương trình đường trung trực của 2 cạnh => có giao điểm là tâm I cần tìm.
Từ đó tính bán kính R và lập pt đường tròn.
a) Đường tròn (C) tâm \(O\left( {0;0} \right)\), bán kính \(R = 4\) có phương trình là: \({x^2} + {y^2} = 16\)
b) Đường tròn (C) tâm \(I\left( {2; - 2} \right)\), bán kính \(R = 8\) có phương trình: \({\left( {x - 2} \right)^2} + {\left( {y + 2} \right)^2} = 64\)
c) Gọi M, N lần lượt là trung điểm của AB, AC ta có: \(M\left( {\frac{1}{2};\frac{5}{2}} \right),N\left( {\frac{5}{2};\frac{7}{2}} \right)\)
Đường trung trực \(\Delta \)của đoạn thẳng AB là đường thẳng đi qua M và nhận vt \(\overrightarrow {BA} = (1;3)\) làm vt pháp tuyến, nên có phương trình \(x + 3y - 8 = 0\)
Đường trung trực d của đoạn thẳng AC là đường thẳng đi qua N và nhận vt \(\overrightarrow {AC} = (3; - 1)\) làm vt pháp tuyến, nên có phương trình \(3x - y - 4 = 0\)
\(\Delta \) cắt d tại điểm \(I(2;2)\) cách đều ba điểm A, B, C suy ra đường tròn (C) cần tìm có tâm \(I(2;2)\) và có bán kính \(R = IA = \sqrt 5 \). Vậy (C) có phương trình: \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 5\)
Thực hành 2
Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó
a) \({x^2} + {y^2} - 2x - 4y - 20 = 0\)
b) \({\left( {x + 5} \right)^2} + {\left( {y + 1} \right)^2} = 121\)
c) \({x^2} + {y^2} - 4x - 8y + 5 = 0\)
d) \(2{x^2} + 2{y^2} + 6x + 8y - 2 = 0\)
+) Phương trình có dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\)là đường tròn với tâm \(I(a;b)\) và bán kính R
+) Phương trình \({x^2} + {y^2} - 2ax - 2by + c = 0\) là phương trình đường tròn khi và chỉ khi \({a^2} + {b^2} - c > 0\), khi đó nó có tâm I(a;b) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} \)
a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b = 2,c = - 20\)
Ta có \({a^2} + {b^2} - c = 1 + 4 + 20 = 25 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1;2)\) và có bán kính \(R = \sqrt {25} = 5\)
b) Phương trình \({\left( {x + 5} \right)^2} + {\left( {y + 1} \right)^2} = 121\) là phương trình dường tròn với tâm \(I( - 5; - 1)\) và bán kinh \(R = \sqrt {121} = 11\)
c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = - 3,b = - 2,c = - 2\)
Ta có \({a^2} + {b^2} - c = 9 + 4 + 2 = 15 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I( - 3; - 2)\) và có bán kính \(R = \sqrt {15} \)
d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn
Vận dụng 1
Theo dữ kiện đã cho trong hoạt động khởi động của bài học, viết phương trình đường tròn biểu diễn tập hợp các điểm xa nhất mà vòi nước có thể phun tới
Tập hợp các điểm xa nhất tạo thành đường tròn với tâm I (a; b) và bán kính R
Phương trình là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\)
Theo giả thiết ta có: tâm \(I(30;40)\) và bán kính \(R = 50\)
Vậy phương trình tập hợp các điểm xa nhất mà vòi nước có thể phun tới là:
\({\left( {x - 30} \right)^2} + {\left( {y - 40} \right)^2} = {50^2}\)
Vận dụng 2
Một sân khấu đã được thiết lập một hệ trục tọa độ bởi đạo diễn có thể sắp đặt ánh sáng và xác định vị trí của các diễn viên. Cho biết một đèn chiếu đang gọi trên sân khấu một vùng sáng bên trong đường tròn (C) có phương trình \({\left( {x - 13} \right)^2} + {\left( {y - 4} \right)^2} = 16\)
a) Tìm tọa độ tâm và bán kính của đường tròn (C)
b) Cho biết tọa độ trên sân khấu của 3 diễn viên A, B, C như sau: \(A(11;4).B(8;5),C(15;5)\).Diễn viên nào đang được đèn chiếu sáng?
a) Với phương trình thì tâm là \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\)thì tâm là \(I(a;b)\) và bán kính R
b) Bước 1: Tính khoảng cách của các diễn viên đến tâm vùng sáng
Bước 2: So sánh khoảng cách vừa tìm được với bán kính
+) Nếu nhỏ hơn hoặc bằng bán kính thì được chiếu sáng
+) Nếu lớn hơn bán kính thì không được chiếu sáng
a) (C) có phương trình \({\left( {x - 13} \right)^2} + {\left( {y - 4} \right)^2} = 16\)nên có tâm là \(I(13;4)\) và bán kính \(R = \sqrt {16} = 4\)
b) Ta có: \(IA = \sqrt {{{\left( {11 - 13} \right)}^2} + {{\left( {4 - 4} \right)}^2}} = 2,IB = \sqrt {{{\left( {8 - 13} \right)}^2} + {{\left( {5 - 4} \right)}^2}} = \sqrt {26} \)
\(IC = \sqrt {{{\left( {15 - 13} \right)}^2} + {{\left( {5 - 4} \right)}^2}} = \sqrt 5 \)
\(2 < 4 \Rightarrow IA < R\), suy ra diễn viên A được chiếu sáng
\(\sqrt {26} > 4 \Rightarrow IB > R\), suy ra diễn viên B không được chiếu sáng
\(\sqrt 5 < 4 \Rightarrow IC < R\), suy ra diễn viên C được chiếu sáng
Vậy diễn viên A và C được chiếu sáng
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK