HĐ Khám phá 2
Cho điểm \({M_0}\left( {{x_0};{y_0}} \right)\) nằm trên đường tròn \((C)\) tâm \(I(a;b)\)và cho điểm\(M(x;y)\) tùy ý trong mặt phẳng Oxy. Gọi \(\Delta \) là tiếp tuyến với \((C)\) tại \({M_0}\)
a) Viết biểu thức tọa độ của hai vt \(\overrightarrow {{M_0}M} \) và \(\overrightarrow {{M_0}I} \)
b) Viết biểu thức tọa độ của tích vô hướng của hai vt \(\overrightarrow {{M_0}M} \) và \(\overrightarrow {{M_0}I} \)
c) Phương trình \(\overrightarrow {{M_0}M} .\overrightarrow {{M_0}I} = 0\)là phương trình của đường thẳng nào?
a) Với \(A(a;b),B(x;y)\) thì tọa độ của vt \(\overrightarrow {AB} = (x - a;y - b)\)
b) Với \(\overrightarrow a = \left( {a,b} \right),\overrightarrow b = (x;y)\) thì \(\overrightarrow a .\overrightarrow b = ax + by\)
c) Từ tích vô hướng đưa ra kết luận là \(\overrightarrow {{M_0}M} = \left( {x - {x_0};y - {y_0}} \right)\), \(\overrightarrow {{M_0}I} = \left( {a - {x_0};b - {y_0}} \right)\)
a) Biểu thức tọa độ của hai vt \(\overrightarrow {{M_0}M} \) và \(\overrightarrow {{M_0}I} \) là \(\overrightarrow {{M_0}M} = \left( {x - {x_0};y - {y_0}} \right)\), \(\overrightarrow {{M_0}I} = \left( {a - {x_0};b - {y_0}} \right)\)
b) Ta có:
\(\overrightarrow {{M_0}M} .\overrightarrow {{M_0}I} = \left( {x - {x_0}} \right)\left( {a - {x_0}} \right) + \left( {b - {y_0}} \right)\left( {y - {y_0}} \right)\)
c) \(\overrightarrow {{M_0}M} .\overrightarrow {{M_0}I} = 0 \Rightarrow \overrightarrow {{M_0}M} \bot \overrightarrow {{M_0}I} \)
Mà \({M_0}I\) là đoạn thẳng nối tâm với điểm nằm ngoài
Vậy ta thấy pt đường thẳng \(M{M_0}\) là tiếp tuyến của đường tròn tại điểm \({M_0}\)
Thực hành 3
Viết phương trình tiếp tuyến của đường tròn \((C):{x^2} + {y^2} - 2x - 4y - 20 = 0\) tại điểm \(A(4;6)\)
Phương trình tiếp tuyến của đường tròn tâm \(I(a;b)\) tại điểm \(M({x_0};{y_0})\)nằm trên đường tròn là: \(\left( {a - {x_0}} \right)\left( {x - {x_0}} \right) + \left( {b - {y_0}} \right)\left( {y - {y_0}} \right) = 0\)
Ta có \({4^2} + {6^2} - 2.4 - 4.6 - 20 = 0\), nên điểm A thuộc (C)
Đường tròn \((C):{x^2} + {y^2} - 2x - 4y - 20 = 0\) có tâm \(I(1;2)\)
Phương trình tiếp tuyến d của (C) tại \(A(4;6)\) là:
\(\begin{array}{l}\left( {4 - 1} \right)\left( {x - 4} \right) + \left( {6 - 2} \right)\left( {y - 6} \right) = 0\\ \Leftrightarrow 3x + 4y + 16 = 0\end{array}\)
Vận dụng 3
Một vận động viên ném đĩa đã vung đĩa theo một đường tròn \((C)\) có phương trình:
\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = \frac{{169}}{{144}}\).
Khi người đó vung đĩa đến vị trí điểm \(M\left( {\frac{{17}}{{12}};2} \right)\) thì buông đĩa (hình 4). Viết phương trình tiếp tuyến của đường tròn \((C)\) tại điểm M
Phương trình tiếp tuyến của đường trong tâm \(I(a;b)\) tại điểm \(M({x_0};{y_0})\)nằm trên đường tròn là: \(\left( {a - {x_0}} \right)\left( {x - {x_0}} \right) + \left( {b - {y_0}} \right)\left( {y - {y_0}} \right) = 0\)
Ta có \({\left( {\frac{{17}}{{12}} - 1} \right)^2} + {\left( {2 - 1} \right)^2} = \frac{{169}}{{144}}\), nên điểm M thuộc (C)
Đường tròn \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = \frac{{169}}{{144}}\) có tâm \(I(1;1)\)
Phương trình tiếp tuyến d của (C) tại \(M\left( {\frac{{17}}{{12}};2} \right)\) là:
\(\begin{array}{l}\left( {\frac{{17}}{{12}} - 1} \right)\left( {x - \frac{{17}}{{12}}} \right) + \left( {2 - 1} \right)\left( {y - 2} \right) = 0\\ \Leftrightarrow \frac{5}{2}x + y - \frac{{133}}{{24}} = 0\end{array}\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK