Trang chủ Lớp 9 SGK Toán 9 - Chân trời sáng tạo Chương 9. Tứ giác nội tiếp. Đa giác đều Câu hỏi Vận dụng 1 trang 77 Toán 9 Chân trời sáng tạo: Cho lục giác đều ABCDEF có M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, DE, EF, FA...

Câu hỏi Vận dụng 1 trang 77 Toán 9 Chân trời sáng tạo: Cho lục giác đều ABCDEF có M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, DE, EF, FA...

Đọc kĩ dữ kiện đề bài để vẽ hình. Trả lời Câu hỏi Vận dụng 1 trang 77 SGK Toán 9 Chân trời sáng tạo - Bài 3. Đa giác đều và phép quay.

Cho lục giác đều ABCDEF có M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, DE, EF, FA. Đa giác MNPQRS có là đa giác đều không? Vì sao?

Phương pháp giải :

- Đọc kỹ dữ kiện đề bài để vẽ hình

- Dựa vào: Đa giác lồi có các cạnh bằng nhau và các góc bằng nhau gọi là đa giác đều.

Lời giải chi tiết:

image

Do ABCDEF là lục giác đều nên:

\(\widehat A = \widehat B = \widehat C = \widehat D = \widehat E = \widehat F = {120^o}\).

- AB = BC = CD = DE = EF = FA.

Vì M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, DE, EF, FA.

Suy ra AM = MB = BN = NC = CP = PD = DQ = QE = ER = RF = FS = SA.

Xét \(\Delta \) SAM và \(\Delta \) MBN có:

\(\widehat A = \widehat B\) (chứng minh trên);

AM = BN (chứng minh trên);

SA = MB (chứng minh trên).

Suy ra \(\Delta \) SAM = \(\Delta \) MBN (c – g – c).

Do đó, SM = MN (hai cạnh tương ứng).

Chứng minh tương tự ta được: MN = NP, NP = PQ, QR = RS, RS = SM (1).

Vì AS = AM (chứng minh trên) suy ra \(\Delta \) ASM cân tại A.

suy ra \(\widehat {ASM} = \widehat {AMS}\) (tính chất tam giác cân)

Nên \(\widehat {ASM} = \widehat {AMS} = \frac{{{{180}^o} - \widehat A}}{2} = {30^o}\) (tổng 3 góc trong của tam giác).

Tương tự ta thu được:

\(\widehat {BMN} = \widehat {BNM} = \frac{{{{180}^o} - \widehat B}}{2} = 30\);

\(\widehat {CNP} = \widehat {CPN} = \frac{{{{180}^o} - \widehat C}}{2} = {30^o}\);

\(\widehat {DPQ} = \widehat {DQP} = \frac{{{{180}^o} - \widehat D}}{2} = {30^o}\);

\(\widehat {EQR} = \widehat {ERQ} = \frac{{{{180}^o} - \widehat E}}{2} = {30^o}\);.

\(\widehat {FRS} = \widehat {FSR} = \frac{{{{180}^o} - \widehat F}}{2} = {30^o}\)

Ta có:

\(\widehat {RSM} = {180^o} - \widehat {FRS} - \widehat {ASM} = {180^o} - {30^o} - {30^o} = {120^o}\)

Tương tự, ta được:

\(\widehat {AMN} = \widehat {MNP} = \widehat {NQP} = \widehat {PQR} = \widehat {QRS} = {120^o}\). (2)

Từ (1) và (2), suy ra MNPQRS là đa giác đều.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK