Trả lời câu hỏi Hoạt động 3 trang 8
Cho hàm số \(y = {x^2}\). Ta lập bảng giá trị sau:
Từ bảng trên, ta lấy các điểm A(-3;9), B(-2;4), C(-1;1), O(0;0), C’(1;1), B’(2;4), A’(3;9) trên mặt phẳng tọa độ Oxy. Đồ thị của hàm số \(y = {x^2}\) là một đường cong đi qua các điểm nêu trên và có dạnh như Hình 2.
Từ đồ thị ở Hình 2, hãy trả lời các câu hỏi sau:
a) Đồ thị của hàm số có vị trí như thế nào so với trục hoành?
b) Có nhận xét gì về vị trí của các cặp điểm A và A’, B và B’, C và C’ so với trục tung?
c) Điểm nào là điểm thấp nhất của đồ thị?
Nhìn vào Hình 2 để nhận xét.
a) Đồ thị của hàm số có vị trí phía trên so với trục hoành.
b) Các cặp điểm A và A’, B và B’, C và C’ đối xứng với nhau qua trục tung.
c) Điểm thấp nhất của đồ thị là điểm O(0;0).
Trả lời câu hỏi Hoạt động 4 trang 8
Cho hàm số \(y = - \frac{3}{2}{x^2}\).
a) Lập bảng giá trị của hàm số khi x lần lượt nhận các giá trị -2; -1;0;1;2.
b) Vẽ đồ thị của hàm số. Có nhận xét gì về đồ thị của hàm số đó?
Thay lần lượt giá x vào hàm số \(y = - \frac{3}{2}{x^2}\)để tính y và lập bảng giá trị.
Từ bảng giá trị gọi các điểm và vẽ đồ thị là một đường cong đi qua các điểm trên.
a)
Lấy các điểm A(-2;6), B(-1; \( - \frac{3}{2}\)), O(0;0), B’(1; \( - \frac{3}{2}\)), A’(2;-6).
Đồ thị hàm số \(y = - \frac{3}{2}{x^2}\) là một đường cong đi qua các điểm nêu trên và có dạng như hình dưới.
Nhận xét: Đồ thị nằm bên dưới trục hoành.
Trả lời câu hỏi Thực hành 3 trang 9
Vẽ đồ thị hàm số y = 2x2.
Để vẽ đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\), ta thực hiện các bước sau:
+ Lập bảng giá trị của hàm số với một số giá trị của x (thường lấy 5 giá trị gồm số 0 và hai cặp giá trị đối nhau).
+ Trên mặt phẳng tọa độ Oxy, đánh dấu các điểm (x;y) trong bảng giá trị (gồm điểm (0;0) và hai cặp điểm đối xứng nhau qua trục Oy).
+ Vẽ đường parabol đi qua các điểm vừa được đánh dấu.
Bảng giá trị:
Trên mặt phẳng tọa độ, lấy các điểm A(-2;8), B(-1;2), O(0;0), B’(1;2), A’(2;8)
Đồ thị hàm số y = 2x2 là một đường parabol đỉnh O, đi qua các điểm trên và có dạng như dưới đây.
Trả lời câu hỏi Vận dụng 3 trang 10
Động năng (tính bằng J) của một quả bưởi nặng 1 kg rơi với tốc độ v (m/s) được tính bằng công thức \(K = \frac{1}{2}{v^2}\).
a) Tính động năng của quả bưởi đạt được khi nó rơi với tốc độ lần lượt là 3 m/s, 4 m/s.
b) Tính tốc độ rơi của quả bưởi tại thời điểm quả bưởi đạt được động năng 32 J.
Thay v lần lượt bằng 3, 4 vào công thức \(K = \frac{1}{2}{v^2}\) để tính.
Thay K = 32 J để tìm v.
a) Với v = 3 m/s ta có \(K = \frac{1}{2}{.3^2} = \frac{9}{2}\) J
Với v = 4 m/s ta có \(K = \frac{1}{2}{.4^2} = 8\)J
b) Với K = 32 J ta có: \(32 = \frac{1}{2}{v^2}\)
suy ra v2 = 64. Do đó, v = 8 (m/s).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK