1. Độ dài cung tròn
Công thức tính chu vi đường tròn
Công thức tính độ dài C của đường tròn (O; R), đường kính d = 2R là:
\(C = \pi d = 2\pi R\)
Công thức tính độ dài cung tròn
Trên đường tròn bán kính R, độ dài l của một cung có số đo \({n^0}\) được tính theo công thức: \(l = \frac{{\pi Rn}}{{180}}\). |
Ví dụ:
Đường tròn (O; 2cm), \(\widehat {AOB} = {60^0}\).
- Cung nhỏ AB bị chắn bởi góc ở tâm AOB.
Do đó sđ$\overset\frown{AB}=\widehat{AOB}={{60}^{0}}$
Độ dài \({l_1}\) của cung AB là:
\({l_1} = \frac{n}{{180}}\pi R = \frac{{60}}{{180}}\pi .2 = \frac{{2\pi }}{3} \approx 2,1\left( {cm} \right)\)
Cung lớn AnB có số đo là:
sđ$\overset\frown{AmN}={{360}^{o}}-{{60}^{0}}={{300}^{0}}$.
Độ dài \({l_2}\) của cung AnB là:
\({l_2} = \frac{{300}}{{180}}\pi .2 = \frac{{10}}{3}\pi \approx 10,5\left( {cm} \right)\)
2. Hình quạt tròn
Khái niệm hình quạt tròn
Hình quạt tròn là một phần hình tròn giới hạn bởi một cung tròn và hai bán kính đi qua hai mút của cung đó. |
Diện tích hình quạt tròn
Diện tích hình quạt tròn bán kính R ứng với cung \({n^o}\): \(S = \frac{{\pi {R^2}n}}{{360}}\) |
Ví dụ: Diện tích hình quạt tròn có độ dài tương ứng với nó là \(l = 4\pi \)cm, bán kính là R = 5cm là:
\({S_q} = \frac{{l.R}}{2} = \frac{{4\pi .5}}{2} = 10\pi \left( {c{m^2}} \right)\)
Khái niệm hình vành khuyên
Cho hai đường tròn đồng tâm \(\left( {O;R} \right)\) và \(\left( {O;r} \right)\) với \(R > r\). Hình vành khuyên là phần mặt phẳng giới hạn bởi hai đường tròn (O;r) và (O;R) được tính bởi công thức: \(S = \pi \left( {{R^2} - {r^2}} \right)\). |
Diện tích hình vành khuyên
Diện tích \({S_v}\) của hình vành khuyên tạo bởi hai đường tròn đồng tâm và có bán kính R và r: \({S_v} = \pi \left( {{R^2} - {r^2}} \right)\) (với R > r) |
Ví dụ: Diện tích hình vành khuyên nằm giữa hai đường tròn đồng tâm có bán kính là 3m và 5m là:
\({S_v} = \pi \left( {{5^2} - {3^2}} \right) = 16\pi \left( {{m^2}} \right)\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK