Trang chủ Lớp 8 SBT Toán 8 - Chân trời sáng tạo Chương 3. Định lí Pythagore. Các loại tứ giác thường gặp Bài 3 trang 57 SBT Toán 8 - Chân trời sáng tạo: Cho tứ giác ABCD như Hình 12. Tính độ dài hai đường chéo và cạnh còn lại của tứ giác...

Bài 3 trang 57 SBT Toán 8 - Chân trời sáng tạo: Cho tứ giác ABCD như Hình 12. Tính độ dài hai đường chéo và cạnh còn lại của tứ giác...

Sử dụng kiến thức về định lí Pythagore vào tam giác vuông để tính: Trong một tam giác vuông. Lời giải bài tập, câu hỏi bài 3 trang 57 sách bài tập toán 8 - Chân trời sáng tạo - Bài 2. Tứ giác. Cho tứ giác ABCD như Hình 12. Tính độ dài hai đường chéo và cạnh còn lại của tứ giác...

Đề bài :

Cho tứ giác ABCD như Hình 12.

image

a) Tính độ dài hai đường chéo và cạnh còn lại của tứ giác ABCD.

b) Cho biết góc B bằng \({53^0}\). Tìm số đo góc C.

Hướng dẫn giải :

a) Sử dụng kiến thức về định lí Pythagore vào tam giác vuông để tính: Trong một tam giác vuông, bình vuông độ dài của cạnh huyền bằng tổng các bình phương độ dài của hai cạnh góc vuông.

b) Sử dụng kiến thức về tổng các góc của một tứ giác để tính góc C: Tổng số đo các góc của một tứ giác bằng 360 độ.

Lời giải chi tiết :

image

a) Áp dụng định lí Pythagore vào tam giác ADC vuông tại D có:

\(A{C^2} = A{D^2} + D{C^2} = {4^2} + {7^2} = 65\), suy ra \(AC = \sqrt {65} \)

Áp dụng định lí Pythagore vào tam giác ADB vuông tại A có:

\(B{D^2} = A{D^2} + A{B^2} = {4^2} + {10^2} = 116\), suy ra \(BD = \sqrt {116} \)

Kẻ CE \( \bot \) AB. Do AD \( \bot \) AB suy ra CE // AD.

Suy ra \(\widehat {DAC} = \widehat {ACE}\) (hai góc so le trong)

Xét \(\Delta ADC\) và \(\Delta CEA\) có:

\(\widehat D = \widehat E = {90^o}\)

\(\widehat {DAC} = \widehat {ACE}\)(cmt)

AC chung

=> \(\Delta ADC\) = \(\Delta CEA\) (cạnh huyền – góc nhọn)

=> AD = CE = 4, DC = AE = 7 (các cặp cạnh tương ứng)

Ta có AE + EB = AB => EB = AB – AE = 10 – 7 = 3

Áp dụng định lí Pythagore vào tam giác CEB vuông tại E, ta có:

\(C{E^2} + E{B^2} = {4^2} + {3^2} = 25 = {5^2} = B{C^2}\), suy ra BC = 5

b) Tứ giác ABCD có: \(\widehat {DCB} = {360^0} - \widehat {DAB} - \widehat {ADC} - \widehat {ABC} = {360^0} - {90^0} - {90^0} - {53^0} = {127^0}\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK