Cho hình bình hành ABCD có \(AD = 2AB\). Gọi M là trung điểm của AD. Kẻ CE vuông góc với AB tại E, MF vuông góc với CE tại F, MF cắt BC tại N. Chứng minh rằng:
a) Tứ giác MDCN là hình thoi;
b) Tam giác EMC là tam giác cân;
c) \(\widehat {BAD} = 2\widehat {AEM}\).
a) Sử dụng kiến thức về dấu hiệu nhận biết hình thoi để chứng minh: Hình bình hành có hai cạnh kề bằng nhau là hình thoi.
b) Sử dụng kiến thức về dấu hiệu nhận biết tam giác cân để chứng minh: Tam giác có đường cao đồng thời là đường trung tuyến là tam giác cân.
c) Sử dụng kiến thức về tính chất của hình thoi để chứng minh: Hình thoi có hai đường chéo là các đường phân giác của các góc của hình thoi.
Xét bài toán phụ 1: Cho tam giác ABC có M, N lần lượt là trung điểm của cạnh AB, AC. Lấy P đối xứng với M qua N. Chứng minh rằng MN//BC, \(MN = \frac{{BC}}{2}\).
Chứng minh:
Tam giác AMN và tam giác CPN có:
\(NA = NC\left( {gt} \right),\widehat {{N_1}} = \widehat {{N_2}}\) (hai góc đối đỉnh), \(NM = NP\) (gt)
Do đó, \(\Delta ANM = \Delta CNP\left( {c - g - c} \right)\)
Suy ra \(\widehat {{A_1}} = \widehat {{C_1}}\), mà hai góc này ở vị trí so le trong nên CP//AB hay CP//BM
Lại có: \(CP = AM = BM\)
Tứ giác BMPC có: CP//BM, \(CP = BM\) nên tứ giác BMPC là hình bình hành. Do đó, MN//BC, \(MN = \frac{{BC}}{2}\)
Xét bài toán phụ 2: Cho hình thang ABCD với AD//BC \(\left( {AD < BC} \right)\). Qua điểm D vẽ đường thẳng DE song song với AB (E thuộc BC); gọi N, Q lần lượt là trung điểm của cạnh DC, DE, M là giao điểm của NQ và AB. Chứng minh rằng \(MA = MB\)
Chứng minh:
Xét tam giác DEC có N, Q lần lượt là trung điểm của DC, DE nên NQ//EC, \(NQ = \frac{1}{2}EC\) (theo bài toán phụ 1)
Suy ra: MQ//BE//AD
Theo giả thiết: DE//AB
Tứ giác ADQM có: MQ/ //AD, MA//QD (gt) nên tứ giác ADQM là hình bình hành. Do đó: \(MA = QD\)
Tứ giác MBEQ có: MQ//BE, BM//QE nên tứ giác MBEQ là hình bình hành. Do đó, \(MB = QE\)
Lại có: \(QD = QE\) (gt) suy ra: \(MA = MB\)
Giải bài 5:
a) Vì ABCD là hình bình hành nên AB//CD, AD//BC
Vì \(MF \bot CE,AB \bot CE\) nên MF//AB. Suy ra: AB//CD//MF
Tứ giác MDCN có: MD//NC (cmt), MN//CD (cmt) nên tứ giác MDCN là hình bình hành.
Lại có: \(MD = \frac{1}{2}AD = CD\) nên MDCN là hình thoi.
b) Xét tứ giác ADCE có: AE//CD (theo câu a)
Do đó, tứ giác ADCE là hình thang.
Hình thang ADCE có: M là trung điểm của AD (giả thiết), AE//MF//CD (theo câu a)
Theo bài toán phụ 2 ta có F là trung điểm của CE.
Xét tam giác ECM có: MF là đường trung tuyến ứng với cạnh CE, \(MF \bot CE\) (gt) nên tam giác EMC cân tại M.
c) Tứ giác MDCN là hình thoi nên \(\widehat {NMD} = 2\widehat {NMC}\) (tính chất đường chéo của hình thoi)
Ta có: \(\widehat {BAD} = \widehat {NMD} = 2\widehat {NMC} = 2\widehat {EMF}\) (1)
Lại có: \(\widehat {AEM} = \widehat {EMF}\) (do AB//MN, hai góc so le trong) (2)
Từ (1) và (2) ta có: \(\widehat {BAD} = 2\widehat {AEM}\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK